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1 INTRODUCTION 
Several studies have identified rare earths as critical materials (DOE 2011, Nassar et al. 2015, NSTC 
2016, Fortier et al. 2018). Although reasonably abundant in the Earth’s crust, rare earths typically 
occur in low concentrations of mined ores (Van Gosen et al. 2017). Processes for recovering rare earth 
concentrates from these ores are complex and capital intensive (García et al. 2017, US EPA 2012).  
Further, lead times for deposit development, licensing, and construction are long, with reports of 10-
15 years (Adamas 2016).  China is a major player in the rare earths supply chain, both in production 
capacity and technology innovation (USGS 2019, Roskill 2018).  In 2017, China supplied more than 80% 
of global rare earth oxide demand.   

Rare earth elements (REEs) have unique magnetic, catalytic, and phosphorescent properties that 
significantly improve performance of a wide range of technologies.  These technologies span 
aerospace, energy, telecommunications, electronics, transportation, defense, and other diverse 
applications. Consequently, disruptions in rare earth supply can have a significant societal impact. 
Estimating that impact requires understanding of the dynamics across the supply chain, from rare 
earth oxide extraction to end use application. 

This report documents Argonne’s Global Critical Materials model (GCMat), first described by Riddle et 
al. 2015. GCMat provides capabilities to explore supply chain dynamics and uncertainty under 
scenarios of demand growth or shrinkage, technology adoption, supply disruptions, and trade policies 
and mitigation strategies of new supply sources, product substitution, consumer thrifting, and 
stockpiling. Supply chain participants from rare earth mining through final demand are modeled as 
interacting agents who make market decisions independently as time progresses. Since the version 
documented in Riddle et al. 2015, GCMat has been expanded to cover additional REEs, derived 
products and supply chains that use these REEs, and includes new agent behaviors and modeling 
capabilities.   

Section 2 provides a summary of the GCMat model design, including the structure of the model and 
key assumptions, section 3 summarizes methods used for model calibration and sensitivity analysis, 
and section 4 provides examples of model results. 

2 GLOBAL CRITICAL MATERIALS (GCMat) MODEL 

2.1 Background 
The agent-based model documented in this report is an extended version of the GCMat model described 
in Riddle et al. 2015.  Agent-based modeling offers a way to simulate dynamic economic markets that 
are composed of agents who (1) have complex decision-making behaviors, and (2) interact with and 
influence each other, possibly indirectly through market signals. The Repast Simphony agent-based 
modeling toolkit provides a framework for implementing and using agent-based models (North et al., 
2013) and is the basis for GCMat. 

The first step in GCMat’s supply chain is rare earth mines. While rare earth mining and oxide separation 
facilities are not always co-located, mines in GCMat perform both steps and produce separated REOs. 
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Over 60 rare earth deposits are modeled using detailed data1 on reserves, mineral compositions, capital 
and operating costs, and operational status. Each rare earth deposit is associated with a rare earth oxide 
mine and separation agent, who uses forecasted profitability and off-take contracting to inform 
decisions on when to start deposit development, when to start construction of a new mining facility, 
when to shut down a mining facility, or when to restart it.  For mining facilities that are operating, mine 
managers make decisions on the quantity of rare earths to produce, the prices and quantities of rare 
earths offered to each potential buyer, and the management of their inventories. Chinese illegal mining 
activities are also included, and are modeled with a separate set of decision rules. Mine agents provide 
REOs to RE metal refiners and REO-containing product producers which supply products such as 
ceramics, catalytic converters, FCC catalysts and additives, optical glass & polish, phosphors, lasers and 
optical fiber. 

Intermediate product producers in the supply chain are represented by additional agents in GCMat. 
Figure 2.1 illustrates the categories of agents in the supply chain, and the product flow between each 
supply and demand.  Agent types represent regional aggregations for China, the US, and rest of world 
(ROW).  These aggregations are used due to limited data availability on individual companies. Agents at 
each level act independently; vertical integration is not currently captured in the model. 

RE metal refiners supply RE metals to RE metal-containing magnet producers, and RE metal-containing 
products such as metal alloys. As detailed in Riddle et al. (2015), neodymium-iron-boron (NdFeB) 
magnet producers supply magnets to wind turbine, electric and hybrid electric vehicle, and electric bike 
manufacturers, and to final demand agents. In the expanded model, these magnet producers also sell 
to producers of other NdFeB magnet containing products.  REO-containing product producers and RE 
metal-containing product producers also supply end use producers (Figure 2.1). 

Each of the producer agents have business decision-making behaviors for establishing contracts, 
updating price offers, buying and selling products, choosing technologies, setting production rates, 
managing inventories, and investing in new production capacities (Figure 2.1).  Final demand agents 
respond to prices in their purchases of end-use products.  Also represented in GCMat are government 
agents who enact regulations that may affect production levels and international trade and illegal 
supply agents who are not bound by government regulations and sell rare earth products at potentially 
disruptive prices and quantities. 

The GCMat model runs are executed in time steps of one week, beginning in January 2010 and ending 
in January 2025.  The model is calibrated to the first several years using historical price data. In each 
time step, price information is passed through the supply chain from mine managers to final demand 
sources, after which demand requests are passed back through to mine managers. Each agent then 
meets these demand requests if they can with available products, and products are passed back through 
to the supply chain. At each stage of the supply chain, the decision behaviors of agents determine 
product prices that nudge the markets towards a balance of supply and demand. Transactions that occur 
between the agents during the simulation are tracked, and regional results are reported for supply, 

                                                           
1 See Table 2.2 for sources of data 
. 
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demand, unmet demand, product substitution, and prices of all materials and products bought and sold 
throughout the supply chain. 

By design, the GCMat-SM model captures market dynamics arising from the autonomous decision 
making and interactions of supply chain agents.  These market dynamics are explored in depth by 
modeling scenarios of interest, which may involve supply disruptions, government actions, and 
different expectations of demand, illegal supply, and technology change in the future.  
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Figure 2.1. GCMat model agent behaviors and flows.  Each large box represents an agent type, the 
dark blue inner boxes contain the types of products sold, and the light blue inner box provides a bullet 
list of behaviors for that agent.  



7 
 
2.2 Agents in GCMat 

2.2.1 RE oxide mine and separation agents 
These agents mine and separate rare earths, selling them in the form of oxides to RE metal refiners 
and RE oxide containing product producers. Rare earth oxides produced include Ce, La, Nd, Pr, Eu, Sm, 
Gd, Dy, Tb, Y oxides, as well as Nd/Pr (didymium) oxide, a mixed Ce/La oxide, and a mixed 
Ce/La/Nd/Pr oxide. 

2.2.1.1 Legal, non-China 
GCMat includes 72 rare earth oxide mining and separation agents outside of China, each of which is 
associated with a rare earth deposit that has a published mineral resource estimate. Four of these 72 
mines are operating at the start of the model in 2010, others may open during the course of the 
model run, while others will never operate with current input data settings.  

2.2.1.2 Legal, China 
GCMat includes ten legal rare earth oxide mining and separation agents in China representing the 9 
Chinese rare earth-producing provinces, Fujian, Guangdong, Guangxi, Hunan, Inner Mongolia, Jiangxi, 
Shandong, Sichuan and Yunnan, with two different mines in Jiangxi representing the Xunwu and 
Longnan deposits. 

2.2.1.3 Illegal, China 
GCMat includes ten Chinese illegal suppliers of rare earth oxides, one corresponding to each legal 
Chinese producer. Buyers include ROW metal refiners (primarily), as well as buyers of oxides for other 
end products that do not require refining (e.g. ceramics, phosphors, and catalysts). US buyers do not 
buy illegal oxides (though they may buy downstream products produced using illegal oxides). 

2.2.2 RE metal refiners 
GCMat includes three metal refiners, one from China, one from the U. S., and one from the rest of 
world, who purchase rare earth oxides and refine them into rare earth metals, and sell them to NdFeB 
magnet producers and RE metal containing product producers.  

2.2.3 NdFeB magnet producers 
GCMat includes three NdFeB magnet producers, one from China, one from the U. S., and one from the 
rest of world, who purchase rare earth metals and produce magnets from them, and sell them to 
NdFeB magnet containing product producers and final demand agents. 

2.2.4 End use producers 
End use producer agents purchase RE oxides, RE metals, or NdFeB magnets and generate products 
that can be purchased by final demand agents. 

2.2.4.1 RE oxide containing product producers 
GCMat includes 48 rare earth oxide containing product producers, including one producer of each 
product from China, U.S., and rest of world. These products include ceramic capacitors, Y ceramics, 
other ceramics, catalytic converters, FCC catalysts, FCC additives, other catalysts, polished glass, 
optical glass, other glass, LEDs, CFLs, LFLs, LCDs, lasers, and optical fiber. 
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2.2.4.2 RE metal containing product producers 
GCMat includes 15 rare earth metal containing product producers, including one producer of each 
product from China, U.S., and rest of world. These products include SmCo magnets, Terfenol D, 
battery alloys, steel alloys, and other alloys. 

2.2.4.3 NdFeB magnet containing product producer 
GCMat includes 14 wind turbine producers, 14 electric and hybrid vehicle producers, and three 
electric bicycle producers. The wind turbine and vehicle producers roughly represent the top real-
world wind turbine and vehicle producing companies, with further breakdowns by region if the 
producer operates in more than one region. Electric bicycle companies are aggregated by region. 
Wind turbine producers sell onshore and offshore wind turbines, and Electric vehicle producers sell 
BEVs (battery electric vehicles), HEVs (hybrid electric vehicles), and PHEVs (plug-in hybrid electric 
vehicles).  

2.2.5 Final demand agents 
GCMat includes 405 final demand agents, representing the final demand for all the different products 
modeled, with three regions, as well as military and civilian break-downs of the demand for each 
product. 

2.3 Model schedule 
Most of the agent types described in Figure 2.1 share common behaviors that can abstractly be 
categorized as suppliers, buyers, or final demand.  The GCMat model architecture minimizes 
behavioral duplication in the code by grouping shared behaviors by the abstract behavioral types.  As 
such, the overall model behavior is succinctly described by a sequence of ordered events that are 
applied by the abstract agent behavior category as described in the following sections. For example, at 
a single point in the model step sequence, all buyer agents update their demands for products from 
supplier agents.  The general model step for this behavior does not determine how each of the buyer 
agents should update their demands, but only that this behavior is to be executed.  The demand 
agents (e.g., end use producers, final demands, magnet producers, etc.) then execute the 
corresponding behavior in that step that is specifically tailored to the needed behavior by the agent. 

2.3.1 Supplier agent update production, capacity, substitution 
The following agent behaviors are called here: 

 Production, inventory updating 
 Capacity expansion 
 Product substitution 

2.3.2 Supplier agent update offers 
The following agent behaviors are called here: 

 Government export quotas 
 Pricing 
 Transaction costs 
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 Illegal production rates 
 Buyers – export amounts (quantity offers) 

2.3.3 Buyer agent update demands 
The following agent behaviors are called here: 

 Input inventory targets 
 Input purchases 
 Price response 
 Suppliers – import amounts 

2.3.4 Supplier agent update operations 
The following agent behaviors are called here: 

 Sales, inventory updating 

2.3.5 Supplier agent update product inventory targets 
The following agent behaviors are called here: 

 Update product inventory targets 

2.3.6 Supplier agent update deposit development and production decisions 
The following agent behaviors are called here: 

 Forecasting 
 Deposit development 
 Mine production capacity 
 Production rates (except illegal) 

2.4 Agent behaviors  

2.4.1 Government Export Quotas 
Export quotas define a limit on sales from supplier agents for a list of specific products in a finite time 
period.  Quotas are defined by a specific start and end time along with a separate basis period start 
and end time. There are two types of export quotas – historical Chinese export quotas and restrictions 
on exports due to some type of supply disruption.  Chinese historical export quotas are set up to 
match the ones that actually existed. Export quotas for total rare earth oxides (TREO) were set to be 
30,258 tonnes in 2010 and 30,246 tonnes in 2011. The 2010 quotas were separated into separate 
quotas for the first and second halves of the year to reflect the announcement of smaller-than-
expected second half quotas. From 2012-2015, separate quotas were established for light rare earth 
oxides (LREO, including Nd, Pr, Ce, La) and medium/heavy rare earth oxides (HREO, including Sm, Eu, 
Gd, Dy, Tb, Eu. Y). The quotas for TREO, LREO, and HREO from 2010 through 2014 are shown in Table 
2.1.  
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Table 2.1: TREO, LREO, and HREO quotas in GCMat, 2012-2014 

Year TREO LREO HREO 
2010 30,258   
2011 30,246   
2012  27,122  3,874  
2013  27,382  3,617  
2014  27,006  3,605  

 

In addition, one set of disruption quotas was also added during the historical period: from Sept 21 to 
Nov 19, 2010, Chinese exports of all oxides and metals to ROW were restricted to 30% of exports at 
the start of the disruption, reflecting the cut-off of shipments to Japan that occurred during this 
period.  In addition, we have set up the ability to implement a future disruption that may restrict 
exports of some products between some regions, with the details established by a set of parameters: 
𝑓𝑦𝑠𝑑, the first year of the supply disruption, 𝑙𝑠𝑑, the length of the supply disruption and 𝑠𝑑𝑠𝑒𝑟, a set 
of parameters that determine the portion of legal sales between each pair of regions that is allowed to 
remain during the supply disruption. These quotas are set separately for each model step (week) and 
for each supplier and product, and are set to be a fixed portion of exports at the start of the 
disruption. Costs of illegal exports may also be increased during a supply disruption. 

Sales Limits from Export Quotas 

An export quota may cover multiple suppliers over multiple periods. The quota is distributed between 
producers in proportion to their exports during a basis period. For the historical quotas, the basis 
period is three years; for the disruption quotas it is one time step. If the quota covers an extended 
period of time, as with the historical Chinese export quotas, the amount that is available to export in 
each period is limited by a calculation that is aimed at making the quota be used up by the end of the 
quota period.  

The export sales limit 𝐸𝑆𝐿௧ at each time step t is  

𝐸𝑆𝐿௧ = 𝑚𝑖𝑛ൣ𝑇𝑂௧ିଵ ∙ 𝑚𝑡𝑜𝑡 ∙ (𝑂𝑇௧ − 𝑇𝑂௧ିଵ),  𝑆𝑅௧,௠௔௫൧ 

Where 𝑇𝑂௧ିଵ is the total offers lag, mtot is the movement towards offer target in period parameter, 
𝑂𝑇௧ is the current offer target, and 𝑆𝑅௧,௠௔௫ is the maximum sales rate: 

𝑆𝑅௧,௠௔௫ =
𝑆௧,௥௘௠௔௜௡

∆𝑡
 

Such that 𝑆௧,௥௘௠௔௜௡ is the remaining sales allowed at time t according to the export quota. 

The offer target is defined as  

𝑂𝑇௧ =
𝑆௧,௥௘௠௔௜

𝑇𝑅௧,௤
∙ 𝑚𝑖𝑛[𝑜𝑜𝑠𝑡௠௔௫, (1/𝑆𝑂𝑂௧)] 
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Where 𝑇𝑅௧,௤ is the time remaining in the export quota, 𝑜𝑜𝑠𝑡௠௔௫ is the maximum offer over sales 
target parameter and 𝑆𝑂𝑂௧ is the expected sales over offer at time t.  The expected sales over offer is  

𝑆𝑂𝑂௧,௘௫௣௘௖௧௘ௗ = ቐ

𝑒𝑠𝑜𝑜௜௡௜௧௜௔௟    𝑖𝑓 𝑇𝑂௧ିଵ = 0 
𝑇𝑆௧ିଵ

𝑇𝑂௧ିଵ
       𝑖𝑓 𝑇𝑂௧ିଵ > 0

 

Where 𝑒𝑠𝑜𝑜௜௡௜௧௜௔௟ is the initial expected sales over offer, and  𝑇𝑆௧ିଵ is the total sales lag.  Both the 
total offers and total sales lags are summed for all products included in the export quota for all 
product buyers covered by the quota: 

𝑇𝑂௧ିଵ = ෍ ෍ 𝑄𝑂௣,௕,௧ିଵ

௕௣

 

Where 𝑄𝑂௣,௕,௧ିଵis the quantity offer of product p for buyer b at t-1.  Similarly, the total sales lag is  

𝑇𝑆௧ିଵ = ෍ ෍ 𝑆௣,௕,௧ିଵ

௕௣

 

Where 𝑆௣,௕,௧ିଵis the sales lag for product p for buyer b. 

Government Export Quota Parameters 
Parameter Description 

𝑓𝑦𝑠𝑑 first year of supply disruption 
𝑙𝑠𝑑𝑦 length of supply disruption in years 

𝑠𝑑𝑠𝑒𝑟1 supply disruption share of exports remaining 
𝑚𝑡𝑜𝑡 Movement towards offer target in period 

𝑜𝑜𝑠𝑡௠௔௫ Maximum offer over sales target 
𝑒𝑠𝑜𝑜௜௡௜௧௜௔௟ Initial expected sales over offer 

1. Separate input values may be set for each mine, source region, and destination region. 

2.4.2 Transaction costs 
Transaction costs in the form of government taxes and tariffs on legal product offers occur between 
buyers and producers in different regions.  The base offer product price 𝑃௣,௧ is multiplied by the cost 
of insurance and freight (CIF) rate and export taxes, both of which are dependent on the source and 
destination countries.  The total buyer price is therefore 

𝑃′௣,௧ = 𝑃௣,௧൫1 + 𝑇𝐶௥௦,௥௕,௣,௧൯ 

Where the total transaction cost (%) including CIF and export taxes, 𝑇𝐶௥௦,௥௕,௣,௧ is a function of the 
seller region (rs) and buyer region (rb) for each product p 

𝑇𝐶௥௦,௥௕,௣,௧ = ൫1 + 𝑇𝑎𝑥௥௦,௥௕,௣,௧൯൫1 + 𝐶𝐼𝐹௥௦,௥௕,௣,௧൯൫1 + 𝑇𝑎𝑟𝑓௥௦,௥௕,௣,௧൯ − 1 

Where 𝑇𝑎𝑥௥௦,௥௕,௣,௧ is the export tax rate (%), 𝐶𝐼𝐹௥௦,௥௕,௣,௧ is the CIF rate (%), and 𝑇𝑎𝑟𝑓௥௦,௥௕,௣,௧ is the 
tariff (%). 
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2.4.3 Forecasting 

2.4.3.1 Demand forecasting 
Demand forecasts are based on past trends in demand. The demand forecast made at time 𝑡 for the 
year 𝑡𝑓 (𝐷𝐹௧,௧௙) is made by first estimating a long-run trend, 𝐷𝐹𝑇௧,௧௙, which is governed by its starting 
value, 𝐷𝐹𝑇௧,௧, and its growth rate, 𝐷𝐹𝐺௧, each of which is updated each period.   

𝐷𝐹𝑇௧,௧௙ = 𝐷𝐹𝑇௧,௧ ∙ (1 + 𝐷𝐹𝐺௧)(௧௙ି௧) 

𝐷𝐹𝑇௧,௧ = (1 − 𝑑𝑚𝑎𝑖𝑝)𝐷𝐹𝑇௧ିଵ,௧ + (𝑑𝑚𝑎𝑖𝑝)𝐷௧ 

ln (1 + 𝐷𝐹𝐺௧) = (1 − 𝑑𝑔𝑚𝑎𝑖𝑝)ln (1 + 𝐷𝐹𝐺௧ିଵ) + (𝑑𝑔𝑚𝑎𝑖𝑝)ln ቆ
𝐷𝐹𝑇௧,௧

𝐷𝐹𝑇௧ିଵ,௧ିଵ
ቇ 

Demand is forecast to converge from its current level toward this long-run trend.  

𝐷𝐹௧,௧௙ = 𝐷𝐹𝑇௧,௧௙ + 𝑑𝑓𝑐𝑖𝑝(௧௙ି௧) ்ௌ⁄ ∙ ൫𝐷௧ − 𝐷𝐹𝑇௧,௧൯ 

Where  

𝑑𝑚𝑎𝑖𝑝 = 1 − 𝑒௟௢௚(଴.ହ)/ௗ௠௔௛ ∙்ௌ 

𝑑𝑔𝑚𝑎𝑖𝑝 = 1 − 𝑒௟௢௚(଴.ହ)/ௗ௚௠௔௛ ∙்ௌ 

𝑑𝑓𝑐𝑖𝑝 = 1 − 𝑒௟௢௚(଴.ହ)/ௗ௙௖௛௟∙்ௌ 

 

When used for forecasting worldwide oxide demand, the following parameters are used 

The model input parameters for the demand moving average half-life (dmahl), the demand growth 
moving average half-life (dgmahl), and the demand forecast convergence to trend half-life (dfcl) are 
given in the table below. 

2.4.3.2 Supply forecasting 
Supply is forecast to increase based on projections of when new deposits will come online. Production 
from China is assumed to be equal to the Chinese production quota for the specified time, which is 
assumed to be known. Each deposit that is actively being developed is projected to come online with 
probability 𝑃𝐷ௗ,௧,௧௙, which is calculated based on the development stage, 𝐷𝑆ௗ,௧, which ranges from 0 
when development is initiated to 1 when the deposit is ready to produce. Deposits that are further 
developed having a greater chance of coming online.   
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𝑃𝐷ௗ,௧,௧௙

= ൞

0         𝑖𝑓 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑤𝑜𝑢𝑙𝑑𝑛ᇱ𝑡 𝑏𝑒 𝑜𝑛𝑙𝑖𝑛𝑒 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡𝑓                                                                            
0         𝑖𝑓 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑑                                                               
𝑝𝑙𝑤𝑖  𝑖𝑓 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑖𝑠 𝑖𝑛 𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑎𝑛𝑑 𝑤𝑜𝑢𝑙𝑑 𝑏𝑒 𝑜𝑛𝑙𝑖𝑛𝑒 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡𝑓                       
1         𝑖𝑓 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑖𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑜𝑟 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑤𝑜𝑢𝑙𝑑 𝑏𝑒 𝑜𝑛𝑙𝑖𝑛𝑒 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑡𝑓

 

𝑆𝐹௣,௧,௧௙ = ෍ 𝑃𝐶ௗ,௣ ∙

ௗఢ஽ഥ

𝑃𝐷ௗ,௧,௧௙ 

2.4.3.3 Price forecasting 
Price forecasts made at time 𝑡 are for a set of future times, 𝑡𝑓𝜖𝑇 = {𝑡, 𝑡 + ∆𝑡, 𝑡 + 2∆𝑡, … , 𝑡 + 𝑛∆𝑡}.  

𝑃𝐹௧,௧௙ = exp ൫ln൫𝑃𝐹𝑀௧,௧௙൯ + 𝑃𝐹𝑅௧,௧௙ ∙ ln൫𝐷𝐹௧,௧௙/𝑆𝐹௧,௧௙൯൯ 

𝑃𝐹𝑀௣,௧,௧௙ is the middle of a range of forecasts made just based on current price and the moving 
average of past prices, defined by: 

ln൫𝑃𝐹𝑀௣,௧,௧௙൯ = ln (𝑃𝑀𝐴𝐹௧) + exp ൬−𝑝𝑓𝑐𝑚𝑎𝑟
∆𝑡

𝑟
൰ ∙ ൫ln൫𝑃𝐹௧,௧௙ି∆௧൯ − ln (𝑃𝑀𝐴𝐹௧)൯ 

𝑝𝑓𝑐𝑚𝑎𝑟 =
௟௡(଴.ହ)

௣௙௖௠௔௛௟
  

𝑃𝐹𝑅 (the price forecast range) determines how much effect the supply/demand balance has in each 
period: 

𝑃𝐹𝑅௧,௧௙ = 𝑝𝑓𝑟𝑠𝑑𝑖 ∙ ∆𝑡 ∙ exp൫−𝑝𝑓𝑟𝑟(𝑡𝑓 − 𝑡)൯ 

𝑝𝑓𝑟𝑟 =
௟௡(଴.ହ)

௣௙௥௛
  

𝑃𝑀𝐴𝐹 is the moving average of past prices defined by:  

𝑃𝑀𝐴𝐹௧ =
∑ (1 − 𝑝𝑓𝑚𝑎𝑖𝑝)௜௧

௜ୀଵ 𝑃௧ି௜

∑ (1 − 𝑝𝑓𝑚𝑎𝑖𝑝)௜௧
௜ୀଵ

 

𝑝𝑓𝑚𝑎𝑖𝑝 = 1 − 𝑒௟௢௚(଴.ହ)/௣௙௠௔௛ ∙்ௌ  

where pdrsdi is the price forecast response to supply-demand imbalance, pfrhl is the price 
forecast range half-life, pfcmahl is the price forecast convergence to moving average half-life, 
and pfmahl is the price forecast moving average half-life. 

Forecasting Parameters 
Parameter Description 

plwi Forecast production likelihood when initiated 
dmahl Demand moving average half-life 

dgmahl Demand growth moving average half-life 
dfcl Demand forecast convergence to trend half-life 
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pdrsdi Price forecast response to supply-demand imbalance 
pfrhl Price forecast range half-life 

pfcmahl Price forecast convergence to moving average half-life 
pfmahl Price forecast moving average half-life 

 

2.4.4 Deposit development decisions 
The deposit development process, illustrated in Figure 2.2, determines how and if deposit developers 
initiate, continue, or cancel developments of mine deposits.  All deposit development decisions 
account for uncertainty in revenue streams. Decisions to enter construction (when most funding is 
committed) is based on risk-averse evaluation of profitability; early development decisions are more 
risk neutral. This may lead to many deposits getting through early development phase with fewer 
advancing to construction. Profitability forecasts account for expected sales of some rare earths (e.g., 
Lanthanum and Cerium) being less than expected production. Advance contracts increase expected 
sales and reduce revenue uncertainty.  

 

Figure 2.2. Flowchart showing decision process during deposit development 

The full deposit development period (including early development and construction), if uninterrupted, 
is determined by the input parameter 𝑑𝑑𝑝 (deposit years to production). The construction period is 
determined by the input parameter 𝑑𝑐𝑝 (deposit construction stage in years). 

2.4.4.1 Offtake agreements 
Offtake agreements provide deposit developers with both 1) a guaranteed buyer, and 2) a risk-free 
revenue stream. Mining agents make choice of risk-free revenue versus uncertain revenue based on 
an explicit representation of price uncertainty in their decision-making process. 

Offtake agreements are arranged before the construction phase (the final 2-3 years of development), 
when the majority of the financial resources are committed.  Steps to arranging offtake agreements: 
1) mines offer prices and max quantities, 2) metal refiners select desired quantities, and 3) mines 
choose from buyer requests.  

First, the Mine agents propose offtake agreement in which the Price, quantity, and duration stay 
constant during the life of a contract.  The contract length is specified by the parameter dacl (deposit 
advance contract length), prices and quantities are endogenously determined, and contracts can 
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include multiple REOs, in any proportions.  Initial price offers from mines are the higher of: 1) a 
markup from expected production cost, and 2) the risk-adjusted forecast price. Initial quantities 
offered are a fixed portion, determined by the input parameter dmcpc (deposit max contract Percent 
of capacity) of maximum production capacity. 

Next, all buyers of oxides from US and ROW make demand forecasts using the demand forecasting 
rule from the ‘Demand Forecasting’ section with their own use of each oxide as the inputs to the 
demand forecast. They determine the maximum amount of each oxide they want to buy with long-
term contracts, based on a user-specified portion of these demand forecasts, mpdltc (max percent 
desired in long term contracts) and what they already have tied up in contracts, as illustrated in Figure 
2.3. Metal refiners select the lowest price option from either a set of available off-take offers or the 
short-term market price (based on forecasts), with a possible discount for long-term contracts based 
on the parameter ltcp (long term contract preference). Oxide buyers then offer a set of REO quantities 
they would buy at that price to the mine.  

 

Figure 2.3. Buyer choice of desired quantity for offtake agreement 

Finally, mines select a set of buyers. If a mine receives more product requests than they offered, they 
can choose to accept a portion of each offer, and choose the portions for each offer to maximize total 
oxides sold, as illustrated in Figure 2.4.  
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Figure 2.4. Supplier choice of offtake agreement contracts 

2.4.4.2 Evaluating Profitability 
Deposits are evaluated regularly to determine if they would be profitable based on forecasts of prices 
during the period that the deposit would be operating. Mines use the price forecasting rule from the 
‘Price forecasting’ section to forecast expected prices during mine operation. Oxide prices are forecast 
once per year for each year from the present until the end of the mine’s expected operation period, 
MOP, which is the smaller of 20 years from opening and the amount of time it would take to fully 
deplete the deposit’s resources. The supply forecast used in each deposit’s price forecast assumes 
that deposit will be operating, so that larger deposits may expect to see a larger decrease in price 
after they come online. Prices of the mining region the deposit is in are used instead of worldwide 
prices. 

Price Forecast Uncertainty 

Uncertainty ranges are added to price forecasts based on historical price volatility, and are applied to 
the mean forecasts described above. The amount of uncertainty increases the farther into the future 
following an Ornstein Uhlenbeck process, which leads to the amount of uncertainty eventually 
approaching a steady state. The parameters of the Ornstein Uhlenbeck process are estimated 
separately for each oxide using historical price data.  

Net Present Value 

Given a set of price forecasts, the net present value of constructing and operating the mine is. 

𝑁𝑃𝑉 = ∑ exp (−𝑑𝑟 ∙ 𝑡𝑓)൫(∑ 𝑆௣,௧௙𝑃𝐹௣,௧,௧௙)௣ − 𝑂𝐶௧௙൯௧௙ఢெை௉ − ∑ exp (−𝑑𝑟 ∙ 𝑡𝑓)൫∑ 𝐶𝐶௧௙௣ ൯௧௙ఢ஼௉   

Production is assumed to be at full capacity while the mine is operating, but sales may be less than 
production: 𝑆௣,௧௙ = 𝑑𝑒𝑠𝑝𝑠௣ ∙ 𝑃𝐶௣,௧௙ = 𝑑𝑒𝑠𝑝𝑠௣ ∙ 𝑃𝐶்ோாை ∙ 𝑂𝑆௣, for each 𝑡𝑓 while the deposit is 
producing, and zero otherwise. The parameters 𝑑𝑒𝑠𝑝𝑠௣ (deposit expected shares of production sold) 
are different for different oxides depending on their presumed level of demand. Operating costs, 
𝑂𝐶௧௙ = 𝑂𝐶𝑅 ∙ 𝑃𝐶்ோாை, during each year the deposit is producing and 0 otherwise. Capital costs are 

evenly distributed over the construction period, so 𝐶𝐶௧௙ =
்஼஼

ௗ௖௣
 during construction and 0 otherwise. 
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𝑇𝐶𝐶 (total capital cost), 𝑂𝐶𝑅 (operating cost ratio), 𝑃𝐶்ோாை (production capacity when producing) 
and 𝑂𝑆௣ (oxide share) are defined in the input data. 𝑑𝑐𝑝 is the deposit construction period, and 
𝑃𝑅்ோாை is the production rate for all oxides. 

Risk Aversion 

Deposit development decisions account for the decreased risk from a certain revenue stream from 
offtake agreements compared to an uncertain revenue stream from short term markets. This is done 
using utility theory; rather than comparing NPV of profits, we compare expected utility of different 
choices.  This allows us to capture different risk profiles and attitudes.  For example, risk-averse 
decision makers prefer a guaranteed revenue stream over a risky one with the same expected return. 

𝑁𝑃𝑉 is a random variable that accounts for uncertainty in prices not covered by contracts. We can 
evaluate if the expected value 𝐸[𝑢(𝑵𝑷𝑽)]>0, where 𝑢(∙) is a risk-averse utility function. We use a 

constant relative risk aversion (CRRA) utility function, 𝑢(𝑐) = ൝
ே௉௏భషഀିଵ

ଵିఈ
 𝑖𝑓 𝛼𝜖[0,1) ∪ (1, ∞)

ln(𝑁𝑃𝑉)  𝑖𝑓 𝛼 = 1                  
   so that 

scaling all prices by the same factor will not affect the results. Expected utility is calculated by 
averaging the results of Monte Carlo sampling from the distribution of 𝑁𝑃𝑉. The risk aversion 
parameter, 𝛼, depends on the stage at which deposit development is being evaluated.  

2.4.4.3 Initiating development 
Deposit development can be initiated if the time is within the development period (𝑑𝑑𝑝) of the 
deposit’s earliest possible start date, which is specified in the input data. After that time, they 
regularly evaluate whether it would be profitable based on forecasts of prices during the period that 
the deposit would be operating. If the expected utility of developing and operating the mine is found 
to be > 0 using a risk-aversion parameter of 𝛼 = 𝑑𝑎𝑓𝑖 (deposit alpha for initiation) then they initiate 
early development. 

2.4.4.4 Suspending development 
Deposits continue to be evaluated regularly within the early development period, using updated price 
forecasts and a risk-aversion parameter of 𝛼 = 𝑑𝑎𝑓𝑒𝑑 (deposit alpha for early development). If at any 
point, their expected utility falls below 0, they suspend development. If they decide to suspend 
development, they can resume at any point if the conditions for initiating development are met, but 
their development is set back by 𝑑𝑠𝑓𝑎 (deposit setback from abandoning) years.   

2.4.4.5 Starting construction 
To proceed to the construction phase, a deposit is reevaluated to determine whether it is profitable 
using a higher risk aversion parameter, 𝛼 = 𝑑𝑎𝑓𝑒𝑐 (deposit alpha for entering construction). Before 
making this evaluation, offtake agreements may be set up as described above to help reduce risks. 
Once in the construction phase, they proceed to bringing the deposit online without reevaluating 
profitability. 

2.4.4.6 Shutdown, restart 
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Once a deposit has begun producing, they may be shut down if two criteria are met. First, they must 
accumulate enough losses to exceed 𝑑𝑐𝑙𝑏𝑠 (deposit cumulative losses before shutdown) times their 
annual operating costs. Second they reevaluate future profitability using 𝛼 = 𝑑𝑎𝑓𝑠 (deposit alpha for 
shutdown) and shut down if their expected utility is less than zero. 

Deposit Developer Parameters 
Parameter Description 

ddp1 Deposit years to production 
dcp1 Deposit construction stage in years 
dacl Deposit advance contract length 

dmcpc Deposit max contract percent of capacity 
mpdltc1 Max percent desired in long term contracts 

ltcp Long term contract preference 
𝑑𝑒𝑠𝑝𝑠௣

2 Deposit expected shares of production sold 
dafi Deposit alpha for initiation 

𝑑𝑎𝑓𝑒𝑑 Deposit alpha for early development 
𝑑𝑠𝑓𝑎1 Deposit setback from abandoning 
𝑑𝑎𝑓𝑒𝑐 Deposit alpha for entering construction 
𝑑𝑐𝑙𝑏𝑠1 Deposit cumulative losses before shutdown 
𝑑𝑎𝑓𝑠 Deposit alpha for shutdown 

1. Separate input values for each region. 
2. Separate input values for each oxide. 

 

2.4.5 Capacity expansion 

2.4.5.1 Mine production capacity 
For mine agents, capacity expansion is driven by deposit development decisions. 

Capacity expansion 

Capacity expansion is determined by the deposit developer agents. A mine manager’s total production 
capacity is defined by: 

𝑃𝐶௣,௧ = ෍ 𝑃𝐶ௗ,௣,௧

ௗ

 

Where 𝑃𝐶ௗ,௣,௧ is the production capacity for deposit d. 

2.4.5.2 NdFeB magnet-containing product producer production capacity 
NdFeB magnet-containing product producers have no capacity limits, they are always able to produce 
enough to meet demand if there are enough magnets available. 

2.4.5.3 Illegal oxide supplier production capacity 
Illegal supplier production capacity, 𝑃𝐶்ோாை,௧, is set to be a fixed multiple of the government target for 
illegal supply, 𝐺𝑇்ோாை,௧, which is specified in the input data. 
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𝑃𝐶௧ = 𝑖𝑐𝑚𝑖𝑡 ∙ 𝐺𝑇்ோாை,௧ 

𝑖𝑐𝑚𝑖𝑡 is the illegal capacity multiple of illegal target. 

2.4.5.4 Capacity expansion (all other agents) 
When producer agents update their offers, they also update their production capacities by summing 
the production capacity additions that are online.  Capacity additions are only scheduled when the 
demand forecast for new capacity exceeds the sum of the current production capacity and capacity 
under development times the capacity utilization to initiate new capacity development (cuincd) input 
parameter. 

The total production capacity for product p is given by  

𝑃𝐶௣,௧ା∆௧ = 𝑃𝐶௣,௧ + ෍ 𝐶𝐴௣,௧ା∆௧ 

where 𝐶𝐴௣,௧ା∆௧ is the capacity addition size for product p, at time 𝑡 + ∆𝑡.  The time lag ∆𝑡 is the new 
capacity years to production input parameter (ncytp). For producer agents with multiple products, the 
total production capacity for each product is separate and indexed by the product name.  Magnet 
producers and metal refiners calculate the total production capacity as above, however, this is the 
total production capacity for the producer agent, e.g. for magnet producers it is the production 
capacity of all magnets. 

Capacity additions are either exogenous, which are preset model inputs that fix the production 
capacity of a specific producer agent at a specific time or endogenous, which are determined by the 
producer agents according to the demand forecast.  Endogenous capacity additions are calculated as 

𝐶𝐴௣,௧ା∆௧ =
𝐸𝐷𝑀௣,௧ା∆௧

𝑐𝑢𝑡௡௘௪
− (𝑃𝐶௣,௧ + 𝐶𝑈𝐷௣,௧) 

Where 𝐸𝐷𝑀௣,௧ା∆௧ is the expected maximum demand during the period from when the capacity would 
be added until 𝑡𝑏𝑛𝑐𝑠 (time basis for new capacity size) years later, 𝑐𝑢𝑡௡௘௪ is the new capacity 
utilization target input parameter, and 𝐶𝑈𝐷௣,௧ is the capacity under development.   

Capacity Expansion Parameters 
Parameter Description 

𝑖𝑐𝑚𝑖𝑡 Illegal capacity multiple of illegal target 
cuincd Capacity utilization to initiate new capacity development 
ncytp New capacity years to production 
tbncs Time basis for new capacity size 

𝑐𝑢𝑡௡௘௪ New capacity utilization target 
 

2.4.6 Product substitution 

2.4.6.1 Product substitution for RE oxide and metal-containing product producers 
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Several agents can use product substitution or thrifting to adjust the amount of rare earths used in 
their production process, or shift between the use of different rare earths. Product substitution rules 
are defined for LFL producers, CFL producers, FCC catalyst producers, FCC additive producers, glass 
polish producers, battery alloy producers, steel alloy producers, magnet producers, wind turbine 
producers, electric vehicle producers and electric bicycle producers. The rules for the following agents 
use the same updating rule: 

 LFL producers can adjust the amount of tri-phosphor used per LFL bulb, while keeping the rare 
earths used in the same proportions 

 CFL producers can adjust the amount of tri-phosphor used per CFL bulb, while keeping the 
rare earths used in the same proportions 

 FCC catalyst producers can adjust the amount of La oxide used per tonne of FCC catalyst 
 FCC additive producers can adjust the amount of Ce oxide used per tonne of FCC additive 
 Glass polish producers can shift between using Ce oxide and a Ce/La mixed oxide 
 Battery alloy producers can shift between using La metal and Ce/La/Nd/Pr mischmetal 
 Steel alloy producers can shift between using Ce/La and Ce/La/Nd/Pr mischmetals 

For each of these producers a minimum and a maximum value is defined in the input data that limits 
the amount of substitution that can occur. Each producer can choose to produce using a technology 
that can be expressed as a weighted average of this minimum and maximum options, based on the 
relative costs and benefits of producing using the minimum and maximum technologies. The 
substitution rule effectively allows the fractional shares of technology inputs to vary as long as the 
actual input flow remains between the min and max values. 

Whenever a producer updates its list of available production technologies, it will check if a 
substitution rule exists for the technology and calculate the minimum technology cost 𝐶𝑇௠௜௡,்,௧,ோ and 
maximum technology cost 𝐶𝑇௠௔௫,்,௧,ோ for technology T at time t, in region R. 

The input amount to each technology option 𝑇𝐴௜,௧ for input i at time t with a substitution rule is then 
updated according to: 

𝑇𝐴௜,௧ = 𝑆𝑇௠௜௡,௧ ∙ 𝑆𝑇𝐴௠௜௡,௜,௧ + 𝑆𝑇௠௔௫,௧ ∙ 𝑆𝑇𝐴௠௔௫,௜,௧ 

Where 𝑆𝑇௠௜௡,௧ and  𝑆𝑇௠௔௫,௧ are the substitution technology shares for the minimum and maximum 
technology substitution rule, and 𝑆𝑇𝐴௠௜௡,௜,௧ and 𝑆𝑇𝐴௠௔௫,௜,௧ are the input amounts for input i for the 
minimum and maximum technology substitution rule.  Substitution technology shares are calculated 
as  

𝑆𝑇௠௔௫,௧ = 𝑆𝑇௠௔௫,௧ିଵ + ൫𝐸𝑆𝑇௠௔௫,௧ − 𝑆𝑇௠௔௫,௧ିଵ൯ ∙ 𝑀𝑇𝐸 

𝑆𝑇௠௜௡,௧ = 1 − 𝑆𝑇௠௔௫,௧ 

𝐸𝑆𝑇௠௔௫,௧ =
𝑒௣௦௘௥௖ௗ∗୪୬ (ூ஼೘ೌೣ,೟)

𝑒௣௦௘௥௖ௗ∗୪୬ (ூ஼೘೔೙,೟) + 𝑒௣௦௘௥௖ௗ∗୪୬ (ூ஼೘ೌೣ,೟)
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Where 𝐸𝑆𝑇௠௜௡,௧, 𝐸𝑆𝑇௠௔௫,௧ are the min and max equilibrium shares, 𝐼𝐶௠௜௡,௧ and 𝐼𝐶௠௔௫,௧ are the costs 
of producing the product using the minimum and maximum technologies, 𝑝𝑠𝑒𝑟𝑐𝑑 is the production 
share equilibrium response to cost differential, and 𝑀𝑇𝐸 is the movement towards equilibrium 
production shares in the period, defined as: 

𝑀𝑇𝐸 = 1 − 𝑒௟௢௚(଴.ହ)/௣௦௘௖௛௟∙்ௌ 

Where 𝑝𝑠𝑒𝑐ℎ𝑙 is the production share equilibrium convergence half-life, and TS is the number of time 
steps per year. 

Product Substitution for Oxide and Metal-containing Product Producers Parameters 
Parameter Description 

psercd Production share equilibrium response to cost differential 
𝑝𝑠𝑒𝑐ℎ𝑙1 Production share equilibrium convergence half-life 

TS Time steps per year 
1. Separate input values for magnet producers and other producers. 

2.4.6.2 Product substitution for magnet producers 
The substitution between Dy and Nd/Pr is very similar to the general substitution rule for oxide and 
metal containing product producers, with a target Dy percent set for each use of magnet and time 
(based on input data assimilated from Steve Constantinides, Adamas, and Roskill). Maximum and 
minimum values, 𝑆𝑇𝐴௠௜௡,௜,௧ 𝑆𝑇𝐴௠௔௫,௜,௧ are set to be 𝑚𝑖𝑑𝑝𝑚 (minimum Dy percent multiplier) and 
𝑚𝑎𝑑𝑝𝑚 (maximum Dy percent multiplier) times the target levels. Higher Dy contents within this 
range are assumed to have a benefit of 𝑏𝑜𝑑 (benefit of Dy) in $/kg of Dy. The result of the substitution 
rule calculation is an amount of Dy per magnet, 𝐷𝑦𝑃𝑀௣,௧ for each type of magnet, p, at each time t.  

The remaining rare earth content of the magnets,  

𝑁𝑑𝑃𝑟𝑃𝑀௣,௧ = 0.31 − 𝐷𝑦𝑃𝑀௣,௧ 

is then assigned to a combination of didymium (Nd/Pr), Nd and Pr metals.  

 

It is assumed that didymium will be a better deal in the long-run than mixing Nd and Pr, so if the 
desired amount of Pr in a magnet is more than the amount of Pr in the purchased didymium, then 
producers use a mix of Pr and didymium; if the desired amount of Pr is less, then they use a mix of Nd 
and didymium. In practice, producers almost always use a combination of Nd and didymium 

The maximum praseodymium from didymium, MPFD, id defined as  

𝑀𝑃𝐹𝐷௣,௧ = 𝑃𝑃𝐷௧ ∙ 𝑁𝑑𝑃𝑟𝑃𝑀௣,௧ 

Where 𝑃𝑃𝐷௧, or Pr per didymium, is the average composition of didymium purchased by the magnet 
producer. 
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The cost of increasing the amount of Pr per magnet (PrPM) is based on the relative price of Di 
compared to Nd if 𝑃𝑟𝑃𝑀 <  𝑀𝐹𝑃𝐷, and the relative cost of Pr compared to Di if 𝑃𝑟𝑃𝑀 >  𝑀𝐹𝑃𝐷.  

In addition, costs of changing the amount of Pr per magnet are included. The marginal costs are 
assumed to increase linearly with the amount of the change, in addition to a fixed cost of making any 
change. The change costs are intended to capture the indirect cost to the magnet producer resulting 
from having to changes product specifications, in addition to any direct costs of making the change. 

The marginal costs, ௗ஼

ௗ௉௥௉ெ
, are specified as follows: 

𝑑𝐶

𝑑𝑃𝑟𝑃𝑀
= 𝐼𝐶(𝑃𝑟𝑃𝑀) + 𝑉𝐶𝐶(𝑃𝑟𝑃𝑀) + 𝐹𝐶𝐶(𝑃𝑟𝑃𝑀) 

𝐼𝐶(𝑃𝑟𝑃𝑀) =

⎩
⎪
⎨

⎪
⎧൫𝑃஽௜,௧ − 𝑃ேௗ,௧൯

𝑃𝑃𝐷்
      𝑖𝑓 𝑃𝑟𝑃𝑀 < 𝑀𝑃𝐹𝐷௣,௧

൫𝑃௉௥,௧ − 𝑃஽௜,௧൯

1 − 𝑃𝑃𝐷௧
    𝑖𝑓 𝑃𝑟𝑃𝑀 > 𝑀𝑃𝐹𝐷௣,௧  

 

𝑉𝐶𝐶(𝑃𝑟𝑃𝑀) = 𝑝𝑏𝑐𝑐𝑠 ∙ (𝑃𝑟𝑃𝑀௧ିଵ − 𝑃𝑟𝑃𝑀) 

𝐹𝐶𝐶(𝑃𝑟𝑃𝑀) = ൜
0      𝑖𝑓 𝑃𝑟𝑃𝑀 < 𝑃𝑟𝑃𝑀௧ିଵ

𝑝𝑏𝑐𝑐 𝑖𝑓 𝑃𝑟𝑃𝑀 > 𝑃𝑟𝑃𝑀௧ିଵ 
 

 

Where 𝐼𝐶(𝑃𝑟𝑃𝑚) are input costs, 𝑉𝐶𝐶(𝑃𝑟𝑃𝑀) are variable change costs and 𝐹𝐶𝐶(𝑃𝑟𝑃𝑀) are fixed 
change costs of increasing PrPM; 𝑃஽௜, 𝑃ேௗ, and 𝑃௉௥ are the prices of Didymium, Nd and Pr metals, 
𝑝𝑏𝑐𝑐 is the Pr benefit change cost, and 𝑝𝑏𝑐𝑐𝑠 is the Pr benefit change cost slope. 

Benefit curves are based on how close Pr per magnet is to target levels: marginal benefit: 

𝑑𝐵

𝑑𝑃𝑟𝑃𝑀
= 𝑝𝑏𝑠 ∙ (𝑃𝑅𝐵𝑋𝐼௣,௧ − 𝑃𝑟𝑃𝑀) 

Where 𝑃𝑅𝐵𝑋𝐼௣,௧ is Pr benefit x-intercept, which is defined separately for each type of magnet and 
time, based on input data, and 𝑝𝑏𝑠 is the Pr benefit slope. 

The target Pr content per magnet, 𝑇𝑃𝑟𝑃𝑀௣,௧, is calculated that maximizes revenues minus costs, given 
these cost and benefit curves.  

The final Pr content per magnet is between its lagged value and the new target value: 

𝑃𝑟𝑃𝑀௣,௧ = 𝑃𝑟𝑃𝑀௣,௧ିଵ + 𝑀𝑇𝐸 ∙ (𝑇𝑃𝑟𝑃𝑀௣,௧ − 𝑃𝑟𝑃𝑀௣,௧ିଵ) 

Where 𝑀𝑇𝐸 is movement to equilibrium and is calculated as 

𝑀𝑇𝐸 = 1 − 𝑒௟௢௚(଴.ହ)/௣௖௧௖ ∙்ௌ 

Where 𝑝𝑐𝑡𝑐ℎ𝑙 is Pr content target convergence half-life. 
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Product Substitution for Magnet Producers Parameters 

Parameter Description 
pbs Pr benefit slope 

pctchl Pr content target half life 
pbcc Pr benefit change cost 
pbccs Pr benefit change cost slope 

midpm Minimum Dy percent multiplier 
madpm Maximum Dy percent multiplier 

bod Benefit of Dy 
TS Time steps per year 

2.4.6.3 Technology choice for NdFeB-containing product producers 
Product line development timeline 

A new product line is initiated each year. When it is initiated, a technology is chosen from the set of 
available technologies. For wind turbine producers, the technology options are DFIG turbines that 
don’t use NdFeB magnets, direct drive turbines that use large NdFeB magnets, hybrid turbines that 
use smaller NdFeB magnets, and Dy-free turbines that use large NdFeB magnets that contain no Dy. 
Electric vehicle producers choose between technologies that use two NdFeB magnets, one NdFeB 
magnet, NdFeB magnets with reduced Dy content, or induction motors that don’t use NdFeB magnets. 
Electric bicycle producers can use a standard technology, one with a smaller motor, one with reduced 
Dy content, and one with no NdFeB magnet. After a development period of 𝑡௉ years, production of 
the new product line begins. Development continues for 𝑡௉ years. 

Technology choice 

When a new product line initiates development, a technology is randomly chosen with probabilities 
that depend on the relative production costs (𝐶௣௖,்,௧) with each technology option 

𝑝൫𝑇𝐶௣௖,௣௟,௧ = 𝑇ത൯ =

൬
1

𝐶௣௖, ത் ,௧
൰

௪೅಴

∑ ൬
1

𝐶௣௖,்,௧
൰

௪೅಴

௧௢

 

Where 𝑤்஼  is a weight that determines the probability of picking lower-cost technologies; a higher 
value means a higher probability of picking the lowest cost technology. 

 

2.4.7 Inventory management 

2.4.7.1 Input inventory targets 
A risk-based input inventory target is calculated as the product of the inventory target in years 𝐼𝑇𝑌௣,௧ 
and the input desired for production forecast, 𝐼𝐷𝑃𝐹௣,௧: 

𝐼𝑇௣,௧ = 𝐼𝑇𝑌௣,௧ ∙ 𝐼𝐷𝑃𝐹௣,௧ 
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The inventory desired for production forecast (𝐼𝐷𝑃𝐹௣,௧) is based on the inputs desired for production 
(𝐼𝐷𝑃௣,௧), which in turn depends on production rates (𝑃𝑅௣,௧ିଵ), and on the technology relationships 
𝑛௣,௜, the amount of input 𝑖 needed to produce one unit of product 𝑝. The forecasting is done using the 
same approach as for demand forecasts, projecting into the future based on trends in past usage, as 
described in the ‘Demand forecasting’ section. The forecasting parameters used are the demand 
moving average half-life (dmahl) and the demand growth moving average half-life (dgmahl), and the 
input use forecast years into the future used (iufyif).  

𝐼𝐷𝑃௣,௧ = ෍ 𝑛௣ଶ,௣ ∙ 𝑃𝑅௣ଶ,௧ିଵ

௣ଶ

 

The inventory target in years 𝐼𝑇𝑌௣,௧  is: 

𝐼𝑇𝑌௣,௧ = 𝐼𝑇𝑌௕௔௦௘,௣,௧ + ൫1 − 𝑒ି௖ ∙ ோ௜௦௞೛,೟൯ ∙ (𝑖𝑖𝑟𝑚𝑡 − 𝑖𝑖𝑡𝑏𝑦) 

Where iitby is the region and producer specific input inventory target base (without builds or risk 
adjustment) parameter, in years of expected input needs for production, iitrmt is the input inventory 
risk max target parameter, c is the input inventory target manager base inventory target calculation 
risk coefficient.  The user-defined base input inventory target in years, 𝐼𝑇𝑌௕௔௦௘,௣,௧ is generally defined 
as: 

𝐼𝑇𝑌௕௔௦௘,௣,௧ = 𝑖𝑖𝑡𝑏𝑦 

and more specifically under the following time periods: 

𝐼𝑇𝑌௕௔௦௘,௣,௧ =

⎩
⎪
⎨

⎪
⎧

𝑖𝑖𝑡𝑏𝑦 + 𝑡𝑖𝑑𝑏𝑦 − 𝑡𝑑𝑑𝑑𝑦 𝑡 > 𝑖𝑑𝑒𝑡

𝑖𝑖𝑡𝑏𝑦 + 𝑡𝑖𝑑𝑏𝑦 − 𝑡𝑑𝑑𝑑𝑦 + 𝑡𝑑𝑑𝑑𝑦 ∙ ൬
𝑖𝑑𝑒𝑡 − 𝑡

𝑖𝑑𝑒𝑡 − 𝑖𝑑𝑠𝑡
൰ 𝑡 > 𝑖𝑑𝑠𝑡

𝑖𝑖𝑡𝑏𝑦 + 𝑡𝑖𝑑𝑏𝑦  𝑡 > 𝑖𝑏𝑒𝑡

𝑖𝑖𝑡𝑏𝑦 + 𝑡𝑖𝑑𝑏𝑦 ∙ ൬
𝑡 − 𝑖𝑏𝑠𝑡

𝑖𝑏𝑒𝑡 − 𝑖𝑏𝑠𝑡
൰ 𝑡 > 𝑖𝑏𝑠𝑡

 

 

The time-based input parameters are: 

 idet:  the input inventory drawdown end time which is the time at which the gradual 
drawdown in inventories following the 2010-2011 price spike ends. 

 idst: the input inventory drawdown start time which is the time at which the gradual 
drawdown in inventories following the 2010-2011 price spike begins. 

 ibet: the input inventory build end time which is the time at which the inventory build that 
helped cause the 2010-2011 price spike ends. 

 ibst: the input inventory build start time which is the time at which the inventory build that 
helped cause the 2010-2011 price spike begins. 
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Additional parameters include the target increase during build in years, tidby, which is the product 
and region-specific amount that input inventory targets increase during the inventory build that 
helped cause the 2010-2011 price spike.  The target decrease during drawdown in years, tdddy, is  

𝑡𝑑𝑑𝑑𝑦 = 𝑡𝑖𝑑𝑏𝑦 + 𝑖𝑑𝑜𝑏 

Where idob is the inventory drawdown over build input parameter. 

 The risk is  

𝑅𝑖𝑠𝑘௣,௧ = 𝑅𝑖𝑠𝑘௣,௧ିଵ ∙ 𝑒ି௥∙்ௌ + 𝑈𝐷𝑅௣,௧ିଵ + 𝑤ଵ ∙ 𝑈𝐷𝑅௥௘௚௜௢௡,௣,௧ିଵ + 𝑤ଶ ∙ 𝑈𝐷𝑅௪௢௥௟ௗ,௣,௧ିଵ 

where TS is the time steps per year input parameter, 𝑟 is the input inventory risk parameter, 𝑤ଵ is the 
input inventory risk region group weight, and 𝑤ଶ is the input inventory risk world weight. 

The producer-specific unmet demand ratio (lag) for input p accounts for the difference between the 
producer’s input demand in the last time 𝐷௣,௧ିଵ and the actual amount of input sales received 𝑆௣,௧ିଵ 
by the producer: 

𝑈𝐷𝑅௣,௧ିଵ =
𝐷௣,௧ିଵ − 𝑆௣,௧ିଵ

𝐷௣,௧ିଵ
 

The unmet demand ratio for world (𝑈𝐷𝑅௪௢௥௟ௗ,௣,௧ିଵ) and regional (𝑈𝐷𝑅௥௘௚௜௢௡,௣,௧ିଵ) product demands 
and sales are calculated via the same equations, except that the respective quantities for demands 
and sales are used: 

𝑈𝐷𝑅௪௢௥௟ௗ,௣,௧ିଵ =
𝐷௪௢௥௟ௗ,௣,௧ିଵ − 𝑆௪௢௥௟ௗ,௣,௧ିଵ

𝐷௪௢௥௟ௗ,௣,௧ିଵ
 

𝑈𝐷𝑅௥௘௚௜௢௡,௣,௧ିଵ =
𝐷௥௘௚௜௢௡,௣,௧ିଵ − 𝑆௥௘௚௜௢௡,௣,௧ିଵ

𝐷௥௘௚௜௢௡,௣,௧ିଵ
 

Input Inventory Target Parameters 
Parameter Description 

Iitby1 Region and producer specific input inventory target 
Dmahl Input inventory demand moving average half-life  

Dgmahl Input inventory demand growth moving average half-life 
Iufyif Input use forecast years into the future 
Iitrmt Input inventory risk max target 

C Input inventory target manager base inventory target 
calculation risk coefficient 

Idet Input inventory drawdown end time 
Idst Input inventory drawdown start time 
Ibet Input inventory build end time 
Ibst Input inventory build start time 

Tidby2 Target increase during build in years 
Idob Input inventory drawdown over build 
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R Input inventory risk parameter 
w1 Input inventory risk region group weight 
w2 Input inventory risk world weight 

1. Separate input values for metal refiners and magnet producers in each region. 
2. Separate input values for each REO, RE metal, and region. 

2.4.7.2 Product inventory targets 
The inventory target for product p is 

𝐼𝑇௣,௧ = 𝐷𝐹௣,௧ ∙ 𝑡𝑝𝑖𝑜𝑑 

Where tpiod is the target product inventories over demand model input parameter, in years of 
expected demand. The demand forecast, 𝐷𝐹௣,௧, is calculated as a moving average of past demand, 
with a moving average half-life parameter of 𝑑𝑚𝑎ℎ𝑙. 

𝐷𝐹௜,௧ =
∑ (1 − 𝑑𝑚𝑎𝑖𝑝)௧௜௧

௧௜ୀ଴ 𝐷௜,௧ିଵି௧

∑ (1 − 𝑑𝑚𝑎𝑖𝑝)௧௜௧
௧௜ୀ଴

 

𝑑𝑚𝑎𝑖𝑝 = 1 − 𝑒௟௢௚(଴.ହ)/ௗ௠௔ ∙்ௌ 

Product Inventory Target Parameters 
Parameter Description 

Tpiod1 Target product inventory over demand (years) 
Dmahl2 Demand moving average half-life 

1. Separate input values for metal refiners and magnet producers in each region. 
2. Separate values for producers, mines, illegal oxide suppliers and smugglers. 

2.4.8 Pricing 

2.4.8.1 NdFeB magnet-containing product producer pricing 
Unlike with other agents, NdFeB magnet-containing product producers do not choose prices based on 
supply and demand, but use a fixed markup of their costs. The price of product 𝑝௧, is equal to the cost 
of the magnet plus a fixed cost chosen to make the total cost at the start equal to the starting price. 
Note that changes in the price of magnets have more of an impact on the price of product if magnet 
costs get to be a higher share of the cost of the product. Prices are set based on the cost of modeled 
inputs (oxides) and other costs (𝐵௣), with a fixed markup (𝑚௣). 

𝑃௜,௧ =
∑ 𝑃௦,௜,௧𝐷௜,௦,௧௦

∑ 𝐷௜,௦,௧௦
 

𝐶௣௖,்,௧ = ൭෍ 𝑛௣௖,்,௜𝑃௜,௧

௜

൱ + 𝐵௣௖,்,௧ 

𝑃௣௖,௧ = 𝑚௣൫∑ ൫𝐶௣௖,்(௣௟),௧ ∙ 𝑃𝑆௣௖,௣௟,௧൯௣௟ ൯  
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where 𝑇(𝑝𝑙) is the technology chosen for product line 𝑝𝑙, 𝐶௣௖,்,௧ is the cost of producing using 
technology 𝑇, and  𝑃𝑆௣௖,௣௟,௧ is the production share for product line 𝑝𝑙. 

2.4.8.2 Illegal oxide producer pricing 
Illegal agents set oxide prices for domestic and export sales as a fixed fraction of legal oxide prices. 
Prices are further adjusted to maintain balance between the export/domestic ratios of illegal supply 
and demand. The illegal domestic price for each oxide, 𝑃௢௫,௜௟,ௗ௢௠,௧ , is a fixed multiple of the legal 
domestic price, 𝑃௢௫,௟,ௗ௢௠,௧: 

𝑃௢௫,௜௟,ௗ௢௠,௧ = 𝑃௢௫,௟,ௗ௢௠,௧ ∙ 𝑖𝑝𝑑𝑖 

where ipdi is the illegal price discount for internal sales. 

The illegal export price for each oxide, 𝑃௢௫,௜௟,௘௫௣,௧, is a fixed multiple of the legal export price with an 
additional adjustment term if there is an imbalance between the time lag (t-1) export shares for 
demand (𝐸𝐷𝑅௧ିଵ) and supply (𝐸𝑆௧ିଵ): 

𝑃௢௫,௜௟,௘௫௣,௧ = 𝑃௢௫,௟,௘௫௣,௧ ∙ 𝑖𝑝𝑑𝑒 ∙ exp൫𝑖𝑜𝑑𝑒𝑒𝑝 ∙ (𝐸𝐷𝑅௧ିଵ − 𝐸𝑆௧ିଵ)൯ 

where ipde is the illegal price discount for exports, and 𝑖𝑜𝑑𝑒𝑒𝑝 is the illegal oxide demand effect on 
export prices: 

𝐸𝐷𝑅௧ =
𝑡𝑜𝑡𝑎𝑙 𝑜𝑥.   𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑤𝑜𝑟𝑙𝑑 (𝑛𝑜𝑛 𝑈𝑆 𝑜𝑟 𝐶ℎ𝑖𝑛𝑎) 𝑏𝑢𝑦𝑒𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝐶ℎ𝑖𝑛𝑒𝑠𝑒 𝑜𝑥𝑖𝑑𝑒 𝑑𝑒𝑚𝑎𝑛𝑑
 

𝐸𝑆௧ = 𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑥𝑝𝑜𝑟𝑡 𝑠ℎ𝑎𝑟𝑒 𝑜𝑓 𝑠𝑎𝑙𝑒𝑠  

Illegal Oxide Producer Pricing Parameters 
Parameter Description 

ipdi Illegal price discount for internal sales 
ipde Illegal price discount for exports 

iodeep Illegal oxide demand effect on export prices 
 

2.4.8.3 Legal mine pricing 
Base product prices (𝑃௣,௧) are adjusted based on inventory lags (𝐼௣,௧ିଵ, 𝐼௣,௧ିଶ, 𝐼௣,௧ିଷ), how inventories 
are changing over time, and effects from the price response to inventory effects and supply demand 
effects, along with capacity utilization effects.  The following sequence of equations describe how the 
product price is compiled from a number of different variables and inputs.  Note that successive 
equation definitions of 𝐿𝑃௣,௧ = 𝐿𝑃௣,௧ + ⋯ indicate that the value of the price or log price are updated 
in sequence, following variable assignment convention in most programming languages. 

The new (at time t) base product price 𝑃௣,௧ depends on the price lag 𝑃௣,௧ିଵ at time t-1, the production 
step markup effect 𝑃𝑆𝑀𝑈𝐸௣,௧, the movement to target markup effect, the price response to forecast 
effect, and the price change forecast lag 𝑃𝐶𝐹௧ିଵ.  The log form of the new price is calculated as 
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𝐿𝑃௣,௧ = 𝐿𝑃௣,௧ିଵ + 𝑃𝑆𝑀𝑈𝐸௣,௧ + 𝑚𝑡𝑚𝑖𝑝 ∙ (𝑙𝑜𝑔(𝑡𝑚) − 𝐿𝑀௧ିଵ) + 𝑆𝐷𝐼𝐸௣,௧ + 𝑝𝑟𝑝𝑓 ∙ 𝑇𝑆 ∙ 𝑃𝐶𝐹௧ିଵ 

where 𝐿𝑃௣,௧ is the log new price, 𝐿𝑃௣,௧ିଵ is the log price lag, tm is the target markup input parameter, 
𝐿𝑀௧ିଵ is the log markup lag, which is calculated by dividing revenues by costs (including operating 
costs of extraction, amortized capital costs and separation costs) in the previous period, and prpf is 
the price response to price forecast input parameter.  The movement to target markup in period, 
mtmip is 

𝑚𝑡𝑚𝑖𝑝 = 1 − 𝑒
௟௢௚(଴.ହ)

௠௧௠௛௟∙்ௌ 

Where mtmhl is the movement to target markup half-life input parameter. 

The supply demand inventory effect 𝑆𝐷𝐼𝐸௣,௧ considers the price response to inventory and price 
response to supply demand. Inventory effects are modeled as  

𝐼𝐸௣,௧ =
𝑝𝑟𝑡𝑖

𝑇𝑆
∙ 𝑙𝑜𝑔൫𝐼𝑅௣,௧൯ 

Where prti is the price response to inventory, TS is the time step, and 𝐼𝑅௣,௧ is the inventory ratio is the 
ratio of the inventory lag I over the inventory target lag IT 

𝐼𝑅௣,௧ =  
𝐼௣,௧ିଵ

𝐼𝑇௣,௧ିଵ
≤ 2 

Supply demand effects consider the price response to last period supply demand input parameter 
prlpsd, the production rate lag PR, the demand lag D, and the demand expectation lag DE 

𝑆𝐷𝐸௣,௧ = 𝑝𝑟𝑙𝑝𝑠𝑑 ∙ 𝑇𝑆 ∙
൫𝑃𝑅௣,௧ିଵ − 𝐷௣,௧ିଵ൯

𝐷𝐸௣,௧ିଵ
 

The combined 𝑆𝐷𝐼𝐸௣,௧ for both supply demand and inventory effects is 

𝑆𝐷𝐼𝐸௣,௧ = 𝐼𝐸௣,௧ + 𝑆𝐷𝐸௣,௧ 

𝑆𝐷𝐼𝐸௣,௧ is constrained between the min and max SDIE input parameters: 

−𝑠𝑑𝑖𝑒௠௔௫ ≤ 𝑆𝐷𝐼𝐸௣,௧ ≤ 𝑠𝑑𝑖𝑒௠௔௫ 

For inventory lags k > 3, the log price is adjusted by the three previous inventory lags 

𝐿𝑃௣,௧ = 𝐿𝑃௣,௧ − 
𝑝𝑟𝑐𝑠𝑑

𝑇𝑆
∙

൫𝐼௣,௧ିଵ − 2𝐼௣,௧ିଶ + 𝐼௣,௧ିଷ൯

𝐷𝐸௣,௧ିଵ
 

Where 𝐷𝐸௣,௧ିଵ is the demand expectation, prcsd is the price response to change in supply and 
demand input parameter, TS is the time step, and  𝐼௣,௧ି௞ are the inventories for lag k. 

Capacity utilization also influences product prices through the capacity utilization effect 
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𝐶𝑈𝐸௧ = (𝐶𝑈௧ − 𝑐𝑢𝑡௡௘௪) ∙ 𝑝𝑟𝑐𝑢 

Where 𝑐𝑢𝑡௡௘௪ is the new capacity utilization target input parameter when choosing how much new 
capacity to add, and determines the target maximum capacity utilization during the forecast period, if 
demand proceeds as forecasted. Lower values mean more new capacity is added.  𝑝𝑟𝑐𝑢 is the price 
response to capacity utilization input parameter. 

Capacity utilization effects are added to the log price 

𝐿𝑃௣,௧ =  𝐿𝑃௣,௧ +  𝐶𝑈𝐸௧ 

The new price 𝑃௣,௧ is assigned from the price after capacity utilization effect 

𝑃௣,௧ = 𝑒௅௉೛,೟  

Product substitution has a stabilization effect on the new price 

𝑃௣,௧ = 𝑃௣,௧ + 𝑆𝑆𝐸௣,௧ 

The new price is constrained by the price change ratio and the min and max log price, according to the 
target minimum price 𝑇𝑃௠௜௡ and target maximum price 𝑇𝑃௠௔௫ 

𝑃௣,௧ = ቊ
𝑃௣,௧ + 𝑚𝑢𝑡𝑡𝑚𝑖𝑝 ∙ ൫𝑇𝑃௠௜௡ − 𝑃௣,௧൯,   𝑖𝑓 𝑃௣,௧ < 𝑇𝑃௠௜௡ 

𝑃௣,௧ − 𝑚𝑑𝑡𝑡𝑚𝑖𝑝 ∙ ൫𝑃௣,௧ − 𝑇𝑃௠௔௫൯,   𝑖𝑓 𝑃௣,௧ > 𝑇𝑃௠௔௫

 

where muttmip is the movement up toward target min in period and mdttmip is the movement down 
toward target max in period input parameters.  

The new price is further constrained by the log price min and max 

𝐿𝑃௣,௧,௠௔௫ = 𝐿𝑃௣,௧ିଵ + 𝑙𝑜𝑔(𝑚𝑝𝑐𝑟) 

𝐿𝑃௣,௧,௠௜௡ = 𝐿𝑃௣,௧ିଵ − 𝑙𝑜𝑔(𝑚𝑝𝑐𝑟) 

where mpcr is the max price change ratio input parameter. The new price is updated as ether the max 
value between the new price and the min or the min value between the new price and the max 

𝐿𝑃௣,௧,௠௜௡ ≤ 𝑃௣,௧ ≤ 𝐿𝑃௣,௧,௠௔௫ 

For convenience, the log new price is defined as  

𝐿𝑃௣,௧ = 𝑙𝑜𝑔൫𝑃௣,௧൯ 

In the case where 𝐿𝑃௣,௧ < 𝐿𝑃௧ିଵ then 𝐿𝑃௣,௧ is adjusted by  

𝐿𝑃௣,௧ = 𝐿𝑃௣,௧ + 𝑝𝑑𝑟 ∙ ൫𝐿𝑃௧ିଵ − 𝐿𝑃௣,௧൯ 
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Where pdr is the price drop reduction input parameter.  Further adjustment is made according to the 
price ratio to regional average 

𝐿𝑃௣,௧ = 𝐿𝑃௣,௧ + 𝑚𝑡𝑟𝑎𝑝𝑖𝑝 ∙ ൫−𝑙𝑜𝑔(𝐵𝑃𝑅𝑇𝑅𝐴௧ିଵ)൯ 

The movement to regional average price in period mtrapip is 

𝑚𝑡𝑟𝑎𝑝𝑖𝑝 = 1 − 𝑒௟௢௚(ଵି௠௧௥௔௣௜௠)/(்ௌ/ଵଶ) 

Where mtrapim is the movement to regional average price in month, and TS is the time steps per year 
input parameter. 

𝐵𝑃𝑅𝑇𝑅𝐴௧ିଵ is the buyer price ration to regional average lag. 

Finally, the new price is simply 

𝑃௣,௧ = 𝑒௅௉೛,೟  

Export Quota Effects on Price (Mine) 

Product prices can be affected by export quotas such that the base product price 𝑃௣,௧ is modified to 
calculate an adjusted price: 

𝑃′௣,௕,௧ = 𝑃௣,௕,௧ + 𝑄𝑃𝐷௣,௕,௧ 

Where 𝑄𝑃𝐷௣,௕,௧ is the quota price difference at time t for buyer b: 

𝑄𝑃𝐷௣,௕,௧ = (1 − 𝑞𝑟𝑝𝑝) ∙ 𝑄𝑃𝐷௣,௕,௧ିଵ + 𝑄𝐸௣,௕,௧ 

Where qrpp is the quota reduction per period input parameter, 𝑄𝑃𝐷௣,௕,௧ିଵ is the quota price 
difference lag, and 𝑄𝐸௣,௕,௧ is the current quota effect on product price for product p. 

Quota effects combine the weighted average log price 𝐿𝑃തതതത
௣,௕,௧ and demand vs. offer effets: 

𝑄𝐸௣,௕,௧ = 𝑒  ௅௉തതതത೛,್,೟  ∙ ൫𝑒஽௏ைா೛,್,೟ − 1൯ 

The demand vs offer effect 𝐷𝑉𝑂𝐸௣,௧ is 

𝐷𝑉𝑂𝐸௣,௕,௧ = 𝑚𝑣𝑑𝑜𝑒 ∙ 𝑒
௟௢௚(଴.ହ)∙൬

ଵି஽ைை೛,್,೟

ଵିௗ௢௢௛௘
൰
 

Where mdvoe is the maximum demand vs. offer effect which is an input parameter that determines 
how much the demand to offer ratio affects the prices if demand equals offers, and doohe is an input 
parameter that determines how much the demand to offer effect on price changes as the ratio 
changes.  The demand over offer 𝐷𝑂𝑂௣,௧ is the ratio of buyer demand lag and quantity offer lag: 

𝐷𝑂𝑂௣,௧ = 𝑚𝑖𝑛 ቆ1 ,
𝐷௣,௕,௧ିଵ

𝑄𝑂௣,௕,௧ିଵ
ቇ 
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Mine Pricing Parameters 

Parameter Description 
mtmhl Movement to target markup half life input parameter 

prpf Price response to price forecast 
prti Price response to inventory 

prlpsd Price response to last period supply demand 
𝑠𝑑𝑖𝑒௠௔௫ Max supply demand inventory effect 

Prcsd Price response to change in supply and demand 
𝑐𝑢𝑡௡௘௪ New capacity utilization target 

prcu Price response to capacity utilization 
muttmip Movement up toward target min in period 
mdttmip Movement down toward target max in period 

mpcr Max price change ratio 
pdr Price drop reduction 

mtrapim Movement to regional average price in month 
qrpp Quota reduction per period 

mdvoe Maximum demand vs. offer effect 
doohe Demand to offer effect on price change 

 

2.4.8.4 Other agent pricing 
For most products, there is dedicated production capacity used to manufacture each product. Metal 
refiners and magnet producers are modeled slightly differently: we model agents that have a fixed 
amount of total capacity, but can choose to use that capacity to produce different kinds of magnets or 
refine different rare earth metals. This affects the pricing of different metals/magnets, since 
differences in profitability should not persist when the agent can switch to producing the more 
profitable product. To capture this, some calculations are done at the production capacity level, 
indexed by pc, where there may be either one or more products (p) associated with each production 
capacity (pc).  𝑃௣௖ is the set of products produced with a given production capacity, which for most 
producers will be a single product, except in the case of metal refiners and magnet producers, in 
which case all products they can produce are included. 

𝑙𝑛(𝐴𝑀௣௖,௧) = ln (𝐴𝑀௣௖,௧ିଵ) + 𝐼𝐸௣௖,௧ + 𝑆𝐷𝐸௣௖,௧ + 𝐶𝑈𝐸௣௖,௧ + 𝑇𝑀𝐸௣௖,௧ 

Where 𝐴𝑀௣௖,௧ is the average markup of products that can be produced with a given production 
capacity. 𝐴𝑀௣௖,௧ିଵ is calculated using 𝑆௣,௧ିଵ ∗ 𝐼𝐶௣,௧ିଵ as weights, where 𝑆௣,௧ିଵ is sales in the last 
period, and 𝐼𝐶 is input cost per unit sold. 

The inventory effect 𝐼𝐸௣,௧ is modeled as  

𝐼𝐸௣,௧ =
𝑝𝑟𝑡𝑖

𝑇𝑆
∙ 𝑙𝑜𝑔൫𝐼𝑅௣,௧൯ 

Where prti is the price response to inventory, TS is the time step, and 𝐼𝑅௣,௧ is the inventory ratio is the 
ratio of the inventory lag I over the inventory target lag IT 
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𝐼𝑅௣,௧ =  
𝐼௣,௧ିଵ

𝐼𝑇௣,௧ିଵ
 

Supply demand effects consider the price response to last period supply demand input parameter 
prlpsd, the production rate lag PR, the demand lag D, and the demand expectation lag DE 

𝑆𝐷𝐸௣,௧ = 𝑝𝑟𝑙𝑝𝑠𝑑 ∙ 𝑇𝑆 ∙
൫𝑃𝑅௣,௧ିଵ − 𝐷௣,௧ିଵ൯

𝐷𝐸௣,௧ିଵ
 

The supply demand and inventory effects are each constrained by minimum and/or maximum values: 

𝐼𝐸௣,௧ ≤ ln (𝑖𝑒௠௔௫) 

−ln(𝑠𝑑𝑒௠௔௫) ≤ 𝑆𝐷𝐸௣,௧ ≤ ln (𝑠𝑑𝑒௠௔௫) 

Capacity utilization also influences prices. The capacity utilization effect is defined as: 

𝐶𝑈𝐸௧ = (𝐶𝑈௧ − 𝑐𝑢𝑡௡௘௪) ∙ 𝑝𝑟𝑐𝑢 

Where 𝑐𝑢𝑡௡௘௪ is the new capacity utilization target input parameter when choosing how much new 
capacity to add, and determines the target maximum capacity utilization during the forecast period, if 
demand proceeds as forecast. Lower values mean more new capacity is added.  𝑝𝑟𝑐𝑢 is the price 
response to the capacity utilization input parameter. 

The target markup effect is calculated as 

𝑇𝑀𝐸௣௖,௧ = 𝑚𝑡𝑚𝑖𝑝 ∙ (ln (𝑇𝐴𝑀௣௖,௧ିଵ) − ln (𝐴𝑀௣௖,௧ିଵ)) 

The movement to target markup in period, mtmip is 

𝑚𝑡𝑚𝑖𝑝 = 1 − 𝑒
൬

௟௢௚(଴.ହ)
௠௧௠௛௟∙்ௌ

൰
 

Where mtmhl is the movement to target markup half-life input parameter. 

Average target markups, like average markups, are calculated using 𝑆௣,௧ିଵ ∗ 𝐼𝐶௣,௧ିଵ as weights. 

Average input costs, 𝐼𝐶௣,௧, of producing the product is calculated, including the costs of purchasing 
modeled products as well as other production costs. 

The profit per unit (𝜋) is calculated as  

𝜋௣௖,௧ =
∑ 𝑆௣,௧ିଵ𝐼𝐶௣,௧௣∈௉೛೎

∙  (𝐴𝑀௣௖,௧ − 1)

∑ 𝑆௣,௧ିଵ௣∈௉೛೎

 

Where 𝐶𝐼𝐶 = ∑ 𝑆௣𝐼𝐶௣௣∈௉೛೎
 is combined input cost, 𝐶𝑆 = ∑ 𝑆௣௣∈௉೛೎

 is combined sales. 𝜋 is the same 

for all products produced using the same production capacity, since if they were not, the producer 
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could switch to producing more of the more profitable product. The value for 𝜋 is chosen to be the 
solution to the equation: 

∑ 𝑆௣,௧ିଵ ∙ (𝐼𝐶௣,௧ + 𝜋௣௖,௧)௣∈௉೛೎

∑ 𝑆௣,௧ିଵ ∙ 𝐼𝐶௣,௧௣∈௉೛೎

= 𝐴𝑀௣௖,௧ 

 so that the combined markup for all products produced using the same production capacity is 𝐴𝑀௣௖,௧. 

In addition to the input costs and the profit, the base price (𝑃) for each product and buyer also 
includes an adjustment so that the prices an agent’s buyers will have to pay is not too different from 
the regional average:  

ln൫𝑃௣,௕,௧൯ = ln൫𝐼𝐶௣,௧ + 𝜋௣௖,௧൯ + 𝑅𝐴𝐸௣,௕,௧ 

𝑅𝐴𝐸௣,௕,௧ = 𝑚𝑡𝑟𝑎𝑝𝑖𝑝 ∙ ൫ln ( 𝑅𝐴𝐵𝑃௣,௕,௧ିଵ൯ − ln (𝐴𝐵𝑃௣,௕,௧ିଵ)) 

Where RABP is the regional average buyer price and ABP is the average buyer price, where buyer 
prices include transaction costs (export taxes, tariffs and the cost of insurance and freight), as 
described in the ‘Transaction costs’ section.  The movement to regional average price in period 
mtrapip is 

𝑚𝑡𝑟𝑎𝑝𝑖𝑝 = 1 − 𝑒௟௢௚(ଵି௠௧௥௔௣௜௠)/(்ௌ/ଵଶ) 

Where mtrapim is the movement to regional average price in month, and TS is the time steps per year 
input parameter. 

Export Quota Effects on Price 

Product prices can be affected by export quotas such that the base product price 𝑃௣,௧ is modified to 
calculate an adjusted price: 

𝑃′௣,௕,௧ = 𝑃௣,௕,௧ + 𝑄𝑃𝐷௣,௕,௧ 

Where 𝑄𝑃𝐷௣,௕,௧ is the quota price difference at time t for buyer b: 

𝑄𝑃𝐷௣,௕,௧ = (1 − 𝑞𝑟𝑝𝑝) ∙ 𝑄𝑃𝐷௣,௕,௧ିଵ + 𝑄𝐸௣,௕,௧ 

Where qrpp is the quota reduction per period input parameter, 𝑄𝑃𝐷௣,௕,௧ିଵ is the quota price 
difference lag, and 𝑄𝐸௣,௕,௧ is the current quota effect on product price for product p. 

Quota effects combine the weighted average log price 𝐿𝑃തതതത
௣,௕,௧ and demand vs. offer effets: 

𝑄𝐸௣,௕,௧ = 𝑒  ௅௉തതതത೛,್,೟  ∙ ൫𝑒஽௏ைா೛,್,೟ − 1൯ 

The demand vs offer effect 𝐷𝑉𝑂𝐸௣,௧ is 

𝐷𝑉𝑂𝐸௣,௕,௧ = 𝑚𝑣𝑑𝑜𝑒 ∙ 𝑒
௟௢௚(଴.ହ)∙൬

ଵି஽ைை೛,್,೟

ଵିௗ௢௢௛௘
൰
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Where mdvoe is the maximum demand vs. offer effect which is an input parameter that determines 
how much the demand to offer ratio affects the prices if demand equals offers, and doohe is an input 
parameter that determines how much the demand to offer effect on price changes as the ratio 
changes.  The demand over offer 𝐷𝑂𝑂௣,௧ is the ratio of buyer demand lag and quantity offer lag: 

𝐷𝑂𝑂௣,௧ = 𝑚𝑖𝑛 ቆ1 ,
𝐷௣,௕,௧ିଵ

𝑄𝑂௣,௕,௧ିଵ
ቇ 

Other Agent Pricing Parameters 
Parameter Description 

prti Price response to inventory 
prlpsd Last period supply demand 
𝑐𝑢𝑡௡௘௪ New capacity utilization target input parameter when 

choosing how much new capacity to add 
𝑝𝑟𝑐𝑢 Price response to capacity utilization 

mtmhl Movement to target markup half-life 
mtrapim Movement toward regional average price in month 

TS Time steps per year 
qrpp Quota reduction per period 

𝑠𝑑𝑒௠௔௫ Supply demand effect max 
𝑖𝑒௠௔௫ Inventory effect max 
mdvoe Maximum demand vs. offer effect 
doohe Demand to offer effect on price change 

 

2.4.9 Buyers – export amounts 

2.4.9.1 Illegal sales targets 
The total sales targets for each oxide (𝑇𝑆𝑇௢௫,௧) are based on production (𝑃𝑅௢௫,௧) and inventories 
(𝐼௢௫,௧), relative to target product inventory levels (𝐼𝑇௢௫,௧) from the ‘Product inventory target’ section: 

𝑇𝑆𝑇௢௫,௧ = 𝑃𝑅௢௫,௧ + 𝑠𝑒𝑖𝑎𝑠 ∙ ൫𝐼௢௫,௧ − 𝐼𝑇௢௫,௧൯ 

Where seias is the share of excess inventories in available supplies input parameter. 

Total sales targets are distributed to buyers by first dividing into export targets and domestic sales 
targets. Illegal exports require additional smuggling risks, so for illegal exports to occur, price 
differential between exports and domestic sales must justify the added risk. The share of illegal 
production targeted for exports depends on the price differential between export prices and internal 
prices, relative to smuggling costs.  Smuggling costs of each rare earth are assumed to be distributed 
following a log-normal distribution.  Note that this is an aggregate cost function, which represents the 
fact that while some producers might be able to export at low cost, others would find it more costly. 

The scale and shape parameters are assumed to be the same for all oxides, and are chosen so that the 
total export share of all oxides at 2010 price differential is determined by the input parameter, ieepd, 
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while the elasticity of total export share in response to a small change in the price differential is 
determined by the input parameter, ieespde. 

The cumulative distribution function for the log-normal distribution is used to calculate the 
equilibrium share for a given price differential: 

𝐸𝑆_𝐸𝑞𝑢௢௫,௧ = 𝐶𝑢𝑚𝐷𝑖𝑠𝑡൫𝑝𝑟𝑖𝑐𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙௢௫,௧൯ 

The export share (𝐸𝑆௢௫,௧) in each period then moves part way to the new equilibrium: 

𝐸𝑆௢௫,௧ = 𝐸𝑆௢௫,௧ିଵ + 𝑚𝑒𝑒𝑖𝑝 ∙ (𝐸𝑆_𝐸𝑞𝑢௢௫,௧ − 𝐸𝑆௢௫,௧ିଵ) 

The movement to equilibrium exports in period, meeip is 

𝑚𝑒𝑒𝑖𝑝 = 1 − 𝑒
௟௢௚(଴.ହ)

௠௘௘௛௟∙்ௌ 

Where meehl is the movement to equilibrium exports half-life input parameter. 

Once the export share, 𝐸𝑆௢௫,௧, is determined, the domestic and export portions of sales targets are 
distributed to individual buyers (b) who are willing to buy illegally in proportion to their total input 
request (𝑇𝐷௕,௧ିଵ) in the previous period: 

𝑆𝑇௢௫, ௕,௧ =
்஽೚ೣ,್,೟షభ

∑ ்஽೚ೣ,್మ,೟షభ್మ∈ವಳ
∙ 𝑇𝑆𝑇௢௫,௧ ∙ (1 − 𝐸𝑆௢௫,௧) for buyers 𝑏 ∈ 𝐷𝐵, the set of domestic buyers 

𝑆𝑇௢௫,௕,௧ =
்஽೚ೣ,್,೟షభ

∑ ்஽೚ೣ,್మ,೟షభ್మ∈ಶಳ
∙ 𝑇𝑆𝑇௢௫,௧ ∙ 𝐸𝑆௢௫,௧        for buyers 𝑏 ∈ 𝐸𝐵, the set of export buyers   

US buyers are not willing to buy illegal oxides, though they may buy downstream products produced 
using illegal oxides. 

Illegal Sales Target Parameters 
Parameter Description 

ieepd Illegal exporter export share at 2010 price differential 
ieespde Illegal exporter export share price differential elasticity 
meehl Movement to equilibrium exports half-life 
seias Share of excess inventories in available supplies 

2.4.9.2 Quantity offers for legal agents 
Suppliers don’t have full control who their buyers are, but they do choose a maximum offer to make 
to each buyer, which is intended to offer enough to each potential buyer to meet expected demand if 
possible, while not exceeding the amount they have available to sell, or sales limits based on export 
quotas. If quotas forces sales to be lower than demand, they prioritize who to sell to and which 
products to sell based on which sales would be most profitable. 

First, the offer before reduction, 𝑂𝐵𝑅௣,௕,௧ is calculated by allocating the maximum offer to different 
buyers based on several buyer characteristics intended to capture potential demand: the amount 
requested by each buyer in the previous period (D), each buyer’s total demand from all suppliers (TD), 
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any additional demand that the buyer could have if its production weren’t limited (ENP). A small 
amount is also allocated evenly to all buyers. 

𝑂𝐵𝑅௣,௕,௧ = 𝐴𝐴𝐵𝐷௣,௧ ∙
𝐷௣,௕,௧ିଵ

∑ 𝐷௣,௕,௧ିଵ௕
+ 𝐴𝐴𝑇𝐷௣,௧ ∙

𝑇𝐷௣,௕,௧ିଵ

∑ 𝑇𝐷௣,௕,௧ିଵ௕
+ 𝐴𝐴𝐸𝑁𝑃௣,௧ ∙

𝐸𝑁𝑃௣,௕,௧ିଵ

∑ 𝐸𝑁𝑃௣,௕,௧ିଵ௕
+ 𝐴𝐴𝐸௣,௧

∙
1

|𝐵|
 

where 𝑇𝐷௣,௕,௧ିଵ is the total buyer demand (from all suppliers) lag, 𝐸𝑁𝑃௣,௕,௧ିଵ is the extra new 
potential demand lag, and 𝐷௣,௕,௧ିଵ is the buyer demand (from supplier) lag. 

The amount to allocate by buyer demand (𝐴𝐴𝐵𝐷௣,௧) is set to: 

𝐴𝐴𝐵𝐷௣,௧  =  ෍ 𝐷௣,௕,௧ିଵ

௕

∙ 𝑏𝑡𝑜𝑜𝑑 + 𝑇𝑆𝑅௣,௧ ∙ 𝑏𝑡𝑜𝑜𝑠𝑡 

where 𝑇𝑆𝑅௣,௧ is the target sales rate, btood is the base target over offer demand input parameter, and 
btoost is the base target offer over sales target input parameter. 

𝐴𝐴𝑇𝐷௣,௧ is the amount to allocate by total demand: 

𝐴𝐴𝑇𝐷௣,௧ = 𝑇𝑆𝑅௣,௧ ∙ 𝑒𝑜𝑜𝑠𝑡 

where eoost is the extra offer over sales target input parameter. 

𝐴𝐴𝐸𝑁𝑃௣,௧ is the amount to allocate by extra new potential: 

𝐴𝐴𝐸𝑁𝑃௣,௧ = ෍ 𝐸𝑁𝑃௣,௕,௧ିଵ

௕

∙ 𝑒𝑜𝑜𝑛𝑝𝑑 

where eoonpd is the extra offer over new potential demand input parameter. 

𝐴𝐴𝐸௣,௧ is the amount to allocate evenly: 

𝐴𝐴𝐸௣,௧ = 𝑀𝑆𝑅௣,௧ ∙ 𝑚𝑜𝑜𝑚𝑠 

where 𝑀𝑆𝑅௣,௧ is the max sales rate, and mooms is the min offer over max sales input parameter. 

Each of these is scaled down by the same multiplier, if needed, so that the total amount to allocate 
does not exceed the maximum sales rate: 

𝑚𝑢𝑙𝑡 = min (
𝑀𝑆𝑅௣,௧

𝐴𝐴𝐵𝐷௣,௧ + 𝐴𝐴𝑇𝐷௣,௧ + 𝐴𝐴𝐸𝑁𝑃௣,௧ + 𝐴𝐴𝐸௣,௧
, 1.0) 

𝐴𝐴𝐵𝐷௣,௧ = 𝐴𝐴𝐵𝐷௣,௧ ∙ 𝑚𝑢𝑙𝑡 

𝐴𝐴𝑇𝐷௣,௧ = 𝐴𝐴𝑇𝐷௣,௧ ∙ 𝑚𝑢𝑙𝑡 
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𝐴𝐴𝐸𝑁𝑃௣,௧ = 𝐴𝐴𝐸𝑁𝑃௣,௧ ∙ 𝑚𝑢𝑙𝑡 

𝐴𝐴𝐸௣,௧ = 𝐴𝐴𝐸௣,௧ ∙ 𝑚𝑢𝑙𝑡 

These offers before reduction (OBR) are then reduced if needed based on export limits (ESL), which 
are calculated in the ‘Government export quotas’ section. 

Long term contracts get priority – if there are limited supplies available, long term contracts are met 
first if possible. If not all long term contracts can be met, long term offers (𝐿𝑇𝑂௣,௕,௧) are all reduced 
from the contract amounts by the same percentage. 

If the long term plus short term offers exceed the amount of the export quotas, then the amount that 
needs to be reduced is calculated as the total short term reduction TSTR: 

𝑇𝑆𝑇𝑅 = 𝑚𝑖𝑛(෍ 𝑂𝐵𝑅௣,௕,௧

௣,௕

 –  𝐸𝑆𝐿௧, ෍ 𝑂𝐵𝑅௣,௕,௧

௣,௕

− ෍ 𝐿𝑇𝐷௣,௕,௧

௣,௕

) 

where 𝐸𝑆𝐿௧ is the amount of the export sales limit for the agent in period, as calculated in the 
‘Government export quotas’ section, and 𝐿𝑇𝐷௣,௕,௧ is demand from long-term contracts. 

If they need to reduce short-term sales below their targets based on demand, they prioritize sales that 
would provide the most benefit from selling to the specified buyer relative to the world average, so 
they reduce offers more for buyers with lower price differentials: 

𝑃𝐷௣,௕,௧ =
𝑃௣,௕,௧ − 𝐴𝑃௣,௧

𝑛𝑝𝑑
 

The average price is: 

𝐴𝑃௣,௧ =
∑ 𝑃௣,௕,௧𝑂𝐵𝑅௣,௕,௧௕

∑ 𝑂𝐵𝑅௣,௕,௧௕
 

The short term reduction is: 

𝑆𝑇𝑅௣,௕,௧ = 𝑇𝑆𝑇𝑅 ∙
𝑂𝐵𝑅௣,௕,௧ ∙ 𝑒ି௉஽೛,್,೟

∑ 𝑂𝐵𝑅௣,௕ ∙ 𝑒ି௉஽೛,್,೟
௕,௣

 

The short term offer is: 

𝑆𝑇𝑂௣,௕,௧ = 𝑂𝐵𝑅௣,௕,௧ − 𝐿𝑇𝐷௣,௕,௧ − 𝑆𝑅𝑇௣,௕,௧ 

The total amount offered to each buyer, 𝑄𝑂௣,௕,௧ = 𝑆𝑇𝑂௣,௕,௧ + 𝐿𝑇𝑂௣,௕,௧ 

Quantity Offers for Legal Agents Parameters 
Parameter Description 

btood Base target offer over demand 
btoost Base target offer over sales target 
eoost Extra offer over sales target 
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eoonpd Extra offer over new potential demand 
mooms Min offer over max sales 

npd Normal price differential 
 

2.4.10 Input purchases 
Agent request enough inputs to meet their production and move inventories in the direction of 
inventory targets. 

𝐷௣,௧ =
𝑖𝑖𝑚𝑡𝑡𝑖𝑝

𝑇𝑆
∙ ൫𝑇𝐼௣,௧ − 𝐼௣,௧ିଵ൯ + 𝐼𝐷𝑃௣,௧ 

with the restriction that it must be at least as high as their contracted purchasing amount. The input 
parameter 𝑖𝑖𝑚𝑡𝑡𝑖𝑝 is the input inventory movement towards target in period, and 𝑇𝑆 is the time step. 

The inventory desired for production (𝐼𝐷𝑃௣,௧) depends on production rates (𝑃𝑅௣,௧ିଵ), and on the 
technology relationships 𝑛௣,௜, the amount of input 𝑖 needed to produce one unit of product 𝑝.  

𝐼𝐷𝑃௣,௧ = ෍ 𝑛௣ଶ,௣ ∙ 𝑃𝑅௣ଶ,௧ିଵ

௣ଶ

 

Input Purchasing Parameters 
Parameter Description 

Iimttip Input inventory movement towards target in period 
TS Time steps per year 

 

2.4.11 Price response 
Final demand agents respond to product prices modeled by 

𝐷௧ = (1 − 𝛿) ∙ 𝐷௧ିଵ ∙ ൬
𝑃௧

𝑃௧ିଵ
൰

ఌ೔೘

 +   𝛿 ∙ 𝐷ഥ௧ ∙ ൬
𝑃௧

𝑃ത
൰

ఌ೗ೝ

 

Where: 

𝜀௟௥ = long run elasticity, taken from the input data 
𝜀௜௠ = 𝑖𝑝𝑠𝑟𝑒 ∙ 𝜀௦௥   is the immediate elasticity, 𝜀௦௥  is the short-run elasticity from the input data, which 
includes the immediate elasticity as well as the first year of the movement toward the long-run 
elasticity 

𝛿 = ቆ1 −
ఌೞೝ

ఌ೗ೝ
(1 − 𝑖𝑝𝑠𝑟𝑒)ቇ

்ௌ

 = rate of convergence to long run equilibrium in a period 

𝑖𝑝𝑠𝑟𝑒 is the immediate portion of short-run elasticity input parameter. 
𝐷௧ = demand at time t 
𝑃௧ = price at time t 
𝑃ത = the baseline price, defined as the value used to formulate the demand projections 
𝐷ഥ௧ = long-run demand at time t and price 𝑝̅ [input values defined by scenario] 



39 
 
 
Price Response Parameters 

Parameter Description 
ipsre Immediate portion of short-run elasticity 

 

2.4.12 Suppliers – import amounts 
All agents that make purchases, including final demand agents and all producers except mines and 
Illegal oxide suppliers, first choose how much to buy legally (if relevant), and then choose among legal 
suppliers based on their purchases the previous period and the relative prices of their suppliers. 

Illegal Purchases 

Agents who buy illegal oxides determine their illegal share of purchases (𝐼𝑆௣,௧) by moving toward a 
target (𝐼𝑆𝑇௣,௧) based on the total of the targets set by the illegal suppliers, 𝑆𝑇௣,௧ = ∑ 𝑆𝑇௦,௣,௧௦ , and total 
demand (legal and illegal) by the buyer, 𝑇𝐷௣,௧ 

𝐼𝑆𝑇௣,௧ = 𝑚𝑖𝑛 ቆ
𝑆𝑇௣,௧

𝑇𝐷௣,௧
,  1ቇ 

𝐼𝑆௣,௧ = 𝐼𝑆௣,௧ିଵ + 𝑖𝑠𝑚𝑡𝑝 ∙ ൫𝐼𝑆𝑇௣,௧ − 𝐼𝑆௣,௧ିଵ൯ 

where 𝑖𝑠𝑚𝑡𝑝 determines the illegal share of purchases movement toward target in period. 

The share of legal demand that is requested from each supplier, 𝐿𝑆𝑆௜,௦,௧, adjusts gradually from its 
previous value based on the difference between prices in the two regions following: 

𝐿𝑆𝑆௣,௦,௧ = 𝐿𝑆𝑆௣,௦,௧ିଵ − 𝑇𝑆 ∙ 𝑖𝑠𝑟𝑝𝑑 ෍ 𝑙𝑛 ቆ
𝑃௦,௣,௧

𝑃௦̅,௣,௧
ቇ

௦̅ஷ௦

 

This is subject to the restriction that supplier shares, 𝐿𝑆𝑆௜,௦,௧, must be between 0 and 1.  𝑖𝑠𝑟𝑝𝑑 is the 
input share response to price difference, 𝑇𝑆 is the time step. 

The share of illegal demand that goes to each supplier, 𝐼𝑆𝑆௣,௦,௧, is in proportion to illegal sales targets, 
𝑆𝑇௦,௕,௧ of the different illegal suppliers. 

In total, the supplier shares for individual legal suppliers are 𝑆𝑆௣,௦,௧ = (1 − 𝐼𝑆௣,௧) ∙ 𝐿𝑆𝑆௣,௦,௧, and for 
individual illegal suppliers are 𝑆𝑆௣,௦,௧ = 𝐼𝑆௣,௧ ∙ 𝐼𝑆𝑆௣,௦,௧ 

Short term demand (total demand, 𝐷௜,௧, as calculated in input purchases or price response sections, 
minus demand from long-term contracts, 𝐿𝑇𝐷௜,௧) is apportioned to suppliers based on these supplier 
shares:  

𝐷௜,௦,௧ = 𝐿𝑇𝐷௜,௦,௧ + (𝐷௜,௧ − 𝐿𝑇𝐷௜,௧) ∙ 𝑆𝑆௜,௦,௧ 

Supplier Choice Parameters 
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Parameter Description 
Ismtp Illegal share movement towards production 
Isrpd Input share response to price difference 

TS Time steps per year 
 

2.4.13 Production rate 

2.4.13.1 Common production rule  
Agents choose how much to produce, 𝑃𝑅், with each technology 𝑇 by maximizing expected profits. 
This is done by finding the production rate at which expected marginal revenues from the sale of 
products equals the expected cost of purchasing inputs and producing the product, subject to a 
production capacity limit.  

Marginal Revenues 

𝐸𝑅𝑆்,௣ is the expected marginal benefit from increasing production of product p using a technology T. 
When production is at the desired level to meet demand (with an inventory adjustment), the marginal 
benefit of producing is equal to the marginal revenues received from sales of the product. Producing 
more than is needed to meet demand will have decreasing marginal benefits, as prices may need to 
drop to be able to sell all of the product being produced. Producing less than is needed to meet 
demand will drop inventories below target levels. If production isn’t enough to meet demand even 
after depleting inventories, the costs are higher, as this may hurt their ability to keep their customers. 
At a minimum, producers will produce enough to meet contracts, if possible.  

To capture this, the marginal revenue function is a decreasing piecewise linear function formed by 
connecting the following points with linear segments: 

Amount produced Marginal revenues 
𝑃𝑀𝑖𝑛𝐶்,௣, the minimum production needed to meet contracts  𝑖𝑐𝑜𝑝𝑚𝑖𝑑 ∙ 𝑀𝑅𝑆௣ 
𝑃𝑀𝑖𝑛𝐷்,௣, the minimum production needed to meet demand 𝑖𝑐𝑜𝑝𝑚𝑖 ∙ 𝑀𝑅𝑆௣ 
𝑃𝑇்,௣, the target production that would meet demand with target inventories 𝑀𝑅𝑆௣ 
𝑃𝑀𝑎𝑥்,௣, the maximum useful production 0 
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Where: 

𝑃𝑀𝑖𝑛𝐶்,௣ = ቀ𝐶𝑁௣ −  𝑝𝑖𝑜𝑝 ∙
ூ೛

்ௌ
ቁ /𝑡𝑝்,௣   is the minimum production with contracts 

𝑃𝑀𝑖𝑛𝐷்,௣ = ቀ𝐷௣ −  𝑝𝑖𝑜𝑝 ∙
ூ೛

்ௌ
ቁ /𝑡𝑝்,௣   is the minimum production with demand  

𝑇𝑃்,௣ = (𝐷௣ +
ூ்೛ ିூ೛

்ௌ
∙ 𝑠𝑒𝑖𝑎𝑠)/𝑡𝑝்,௣  is the target production based on adjusting 

demand to account for inventories 

𝑃𝑀𝑎𝑥்,௣ = (𝐷௣ +
ூ்೛ ∙௠௜௜ିூ೛

்ௌ
∙ 𝑚𝑖𝑚𝑢𝑚)/𝑡𝑝்,௣  is the maximum useful production for product 

p, for technology T 

𝐶𝑁௣ are contract needs for product p, and 𝐷௣ are demands for product p, 𝐼𝑇௣ are inventory targets, 𝐼௣ 
are inventories. 𝑡𝑝்,௣ are the amounts produced of each product per unit of production with 
technology T. 𝑀𝑅𝑆௣ = 𝑆𝑃௣ ∙ 𝑡𝑝்,௣ are the marginal revenues from sales, based on prices the producer 
can get from selling a product, 𝑆𝑃௣. 𝑇𝑆 is the time step size.  

Marginal Costs 

𝑀𝐶்,௣ = 𝑀𝐶𝑃𝐼்,௣ + 𝑀𝐶𝑀𝐼்,௣ + 𝑀𝑇𝐶் 

𝑀𝐶𝑃𝐼்,௣ is the expected marginal cost from use of purchased input 𝑝 due to increasing production of 
technology 𝑇. 𝑀𝐶𝑀𝐼்,௣ is the expected marginal cost from use of manufactured input 𝑝, which only 
applies to decisions of how much to separate mine products, where the inputs to the separation step 
is also generated by the same Mine/Separation agent. 𝑀𝑇𝐶் is the marginal technology costs, which 
covers all other costs of production not explicitly included in the model, including purchases of 
products that aren’t modeled. 

The marginal cost of purchased inputs, 𝑀𝐶𝑃𝐼்,௣, is generally based on the purchase costs of inputs, if 
enough inputs are available for purchase. If input needs are greater than what is available, the costs of 
production increase to a max level of drawdown from inventories. Production beyond that point is not 
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allowed. If input inventories are higher than targets, then there is assumed to be no cost of using 
enough inventories to bring input inventories toward targets at the desired rate.  

To capture this, the marginal cost function is an increasing piecewise linear function formed by 
connecting the following points with linear segments: 

Amount produced Marginal costs 
< 𝑃𝑇𝐼்,௣, production level to bring inventories toward targets with no purchases  0 
𝑃𝑇𝐼்,௣  𝑀𝐶𝑃௣ 
𝑃𝑂𝑇𝐼்,௣, production level to bring inventories toward targets with max purchases 𝑀𝐶𝑃௣ 
𝑃𝑀𝑎𝑥்,௣, maximum possible production with max purchases and inventory use 𝑖𝑐𝑜𝑝𝑚𝑖 ∙ 𝑀𝐶𝑃௣ 

  

 

Where:  

𝑀𝐶𝑃்,௣ = 𝐵𝑃௣ ∙ 𝑡𝑖்,௣    is the marginal cost due to purchases of input p: 

𝑡𝑖்,௣  are the amounts used of each input per unit of 
production with technology t  

𝐵𝑃௣  are the buyer prices the producer would pay to buy a 
product p. 

𝑄𝑂௣      is the total quantity offer received from all suppliers  

𝑃𝑇𝐼௣ = ቀ
ூ೛ ିூ ೛்

்ௌ
∙ 𝑠𝑒𝑖𝑎𝑠ቁ /𝑡𝑖்,௣   is production to use target inventories  

𝑃𝑂𝑇𝐼்,௣ = ቀ𝑄𝑂௣ +  
ூ೛ ିூ ೛்

்ௌ
∙ 𝑠𝑒𝑖𝑎𝑠ቁ /𝑡𝑖்,௣ is production to use offers and target inventories 

𝑃𝑀𝑎𝑥்,௣ = ቀ𝑄𝑂௣ +  𝑝𝑖𝑜𝑝 ∙
ூ೛

்ௌ
ቁ /𝑡𝑖்,௣  is the maximum production 
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The marginal cost of manufactured inputs, 𝑀𝐶𝑀𝐼்,௣, is the inverse of the marginal revenue function, 
since any inputs not used in the production step will be available for sale and subject to the same 
marginal revenue function. The amount available for sale will be 𝑈𝑃௣ − 𝑃𝑅𝑇் ∙ 𝑡𝑖்,௣, where 𝑈𝑃௣ is 
upstream production of product p, 𝑃𝑅𝑇் is the production rate target of technology T (which is being 
adjusted to maximize profits) and 𝑡𝑖்,௣ are the amounts used of each input per unit of production with 
technology T. 

Marginal technology costs, 𝑀𝑇𝐶், are a assumed to be constant and are specified in the input data. 

Capacity Limit 

Total capacity for a given technology cannot exceed a maximum production capacity, 𝑃𝐶௉஼. 

Net Marginal Revenue 

The marginal revenue and cost functions are combined (revenues – costs) into a single net marginal 
revenue function associated with each technology: 

 

 

If the production capacity can be used to produce one product, then the production level is found so 
that the net marginal revenue equals the near-production-capacity cost. If there is more than one 
possible product that can be produced using the same production capacity, as with metals, then a 
point is found where the marginal revenues (mr) for producing each product are all equal, and are also 
equal to the marginal costs (mc) of being near capacity at that total production level (or are at the 
maximum production capacity if marginal revenues > costs at maximum), as illustrated below: 
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The result of this optimization is a target production level (𝑃𝑅𝑇்,௧) for each technology. Actual 
production levels, 𝑃𝑅்,௧ move a portion of the way to target production levels in each period, with the 
speed of convergence related to how much changing to the new target production level would 
increase profits.  

𝑃𝑅்,௧ = 𝑃𝑅்,௧ିଵ + 𝑀𝐶 ∙ 𝑃𝑀𝐶 

𝑀𝐶 = (𝑃𝑅𝑇்,௧ − 𝑃𝑅்,௧ିଵ) ∙ 𝑚𝑚𝑛𝑡 

𝑃𝑀𝐶 = 1 − (1 − 𝑝𝑜𝑚1)௉ூோ 

𝑃𝐼𝑅 =
𝑃𝐼 ∙ 𝑃𝑅ெ஺

𝑀𝐶 ∙ 𝑇𝐶ெ஺
 

Where: 

𝑀𝐶  is the maximum change 

𝑃𝑀𝐶  is the portion of max change to move 

𝑃𝐼𝑅  is the profit improvement rate, 

𝑃𝐼  is the profit improvement from switching from 𝑃்,௧ିଵ to 𝑃்,௧ିଵ + 𝑀𝐶 

𝑃𝑅ெ஺  is a moving average of past production levels 

𝑇𝐶ெ஺  is a moving average of past total costs of production 

Initial Production Capacity Influence on Production Rates 

Finally, production is not allowed to exceed a minimum capacity utilization, and it cannot exceed 
capacity. The actual production rates 𝑃𝑅௣,௧ are adjusted if needed according to available production 
capacity, 𝑃𝐶௣,௧ 

𝑃𝑅௣,௧ = ቐ

𝑃𝐶௣,௧  𝑖𝑓 𝑃𝑅 > 𝑃𝐶

𝑃𝐶௣,௧ ∙ 𝑐𝑢௣,௠௜௡ 𝑖𝑓 𝑃𝑅 < 𝑃𝐶 ∙ 𝑐𝑢௣,௠௜௡

𝑃𝑅௣,௧ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑐𝑢௣,௠௜௡ is the minimum capacity utilization input parameter. 
 
Common Production Rule Parameters 

Parameter Description 
seias1 Share of excess inventories in available supplies 
Piop2 Portion of inventory to offer in period 
mii Maximum inventories over inventories 

𝑚𝑖𝑚𝑢𝑚 Maximum inventory movement to useful max 
𝑖𝑐𝑜𝑝𝑚𝑖 Input cost over price min inventory 

𝑖𝑐𝑜𝑝𝑚𝑖𝑑 Input cost over price min inventory and demand 
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TS Time steps per year 
Mmnt3 Max movement to new target 
pom1 Portion of max if profit improvement rate is 1 

𝑐𝑢௣,௠௜௡ Minimum capacity utilization 
1. Separate values for metal refiners, mine, and illegal oxide suppliers. 
2. Separate values for mine, and illegal oxide suppliers, and general producers. 
3. Separate values for mines. 

2.4.13.2 Chinese production quotas 
Production from Chinese mines are limited by production quotas. Total production quotas are defined 
in the input data, and quotas are distributed to the different Chinese mines in proportion to their 
production capacity. Chinese mines decide how much to produce using the same common production 
rule as other agents, but with the maximum production capacity reduced to match the production 
quota.  

2.4.13.3 Oxide separation 
Oxide separation is done by mining and illegal oxide supplier agent. We model oxide production in the 
following steps:  

1. Oxide is extracted and a mixed oxide is produced containing Ce, La, Nd and Pr, while heavy 
and SEG rare earths are separated into Dy, Tb, Eu, Gd, Sm, and Y oxides. 

2. A portion of the CeLaNdPr mixed oxide is separated into CeLa and NdPr oxides.  
3. A portion of the CeLa oxide is separated into Ce and La oxides 
4. A portion of the NdPr oxide is separated into Nd and Pr oxides. 

The result is that a mix of Dy, Tb, Eu, Gd, Sm, Y, Ce, La, Nd, Pr, CeLa, Didymium (NdPr) and mixed 
(CeLaNdPr) oxides. 

The amount that is extracted and the amount that is separated at each phase is determined using the 
production rule described in the ‘Common production rule’ section.  

2.4.13.4 Illegal production 
Each illegal agent produces rare earths in fixed proportions, which are specified as 𝑃𝑆௢௫, the share of 
total rare earth oxide (TREO) in the deposit that is of oxide 𝑜𝑥.  

Target extraction rates for TREO, 𝑃𝑅𝑇்ோாை,௧ are set using the common production rule described in 
the ‘Common production rule’ section, and separation rates are set as described in the ‘Oxide 
separation’ section. Demand used as an input to the production rule is calculated differently from 
other types of agents. Total illegal demand (TID) is based on a separate calculation of domestic (China) 
illegal demand (DID) and foreign (non-China) illegal demand (FID). Domestic illegal demand is the 
amount of domestic demand (DD) in excess of domestic legal production (DLP). Foreign illegal demand 
(FID) is calculated as foreign demand (FD) in excess of foreign production (FP) minus legal export 
demand (LED), which is a share of export demand based on the amount legal production that is 
available relative to total demand. Legal exports are also subject to a limit based on export quotas 
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(EQ). Restrictions on which buyers are allowed to buy illegally are also accounted for. This total illegal 
demand is then assigned to individual agents in proportion to their production in the previous period. 

𝑇𝐼𝐷 = 𝐷𝐼𝐷 + 𝐹𝐼𝐷 

𝐷𝐼𝐷 = max(0, 𝐷𝐷 − 𝐷𝐿𝑃) 

𝐹𝐼𝐷 = max(0, 𝐹𝐷 − 𝐹𝑃 − 𝐿𝐸𝐷) 

𝐿𝐸𝐷 = min (𝐹𝐷 − 𝐹𝑃, (𝐹𝐷 − 𝐹𝑃) ∙
𝐷𝐿𝑃

𝐷𝐷 + 𝐹𝐷 − 𝐹𝑃
, 𝐸𝑄) 

The Chinese government may try to limit illegal production, but sources differ on how much effort 
they will make on this goal. We model this by specifying government targets for illegal supply, 𝐺𝑇௧, 
that may change over time and can depend on the scenario used. The government target is assigned 
to individual agents in proportion to their target production. If the government target is less than the 
supplier target (𝑃𝑅𝑇்ோாை,௧) then production (𝑃𝑅்ோாை,௧) is reduced: 

𝑃𝑅்ோாை,௧ = min (𝑃𝑅𝑇்ோாை,௧ ,  𝑃𝑅𝑇்ோாை,௧ − 𝑚𝑡𝑔𝑝𝑡 ∙ ൫𝑃𝑅𝑇்ோாை,௧ − 𝐺𝑇்ோாை,௧൯) 

Where 𝑚𝑡𝑔𝑝𝑡 is movement toward government production target.  

Illegal Production Parameters 
Parameter Description 

𝑚𝑡𝑔𝑝𝑡 Movement toward government production target 
 

2.4.13.5 NdFeB magnet production 
Total magnet production is calculated using the common production rule described in the ‘Common 
production rule’ section, using average prices, input use and production costs for the different types 
of magnet in the proportions produced in the previous period. 

Production targets for each magnet type, 𝑃𝑇௣,௧, are divided in order to make inventories of the 
different magnet types proportional to target inventory levels when possible, given the restriction that 
production of each magnet type must be non-negative. 

2.4.13.6 NdFeB magnet-containing product production 
Production decisions are modeled more simply for NdFeB magnet containing product producers. Total 
production rates 𝑃𝑅௣௖,௧ are set to be enough to match demand. Production levels for each product 
line are determined by production shares. Production levels for newly initiated product lines are equal 
to the average production level of all lines in production,  

𝑃𝑅௣௖,௣௟,௧ = 𝑃𝑅௣௖,௧ ∙ 𝑃𝑆௣௖,௣௟,௧ 

Production levels for the different product lines adjust over time in the direction of equilibrium 
production shares that depend on the relative costs of the production for each product line (based on 
different technologies used). 
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𝑃𝑆𝐸𝑞௣௖,௣௟തതത,௧ =

൬
1

𝐶௣௖,்(௣௟തതത),௧
൰

௘௨௣௦௘௥௖ௗ

∑ ൬
1

𝐶௣௖,்(௣௟),௧
൰

௘௨௣௦௘௥௖ௗ

௣௟

 

𝑃𝑆௣௖,௣௟,௧ = 𝑃𝑆௣௖,௣௟,௧ିଵ + 𝑒𝑢𝑝𝑠𝑒𝑐𝑖𝑝൫𝑃𝑆𝐸𝑞௣௖,௣௟,௧ − 𝑃𝑆௣௖,௣௟,௧ିଵ൯ 

Where 𝐶௣௖,்(௣௟),௧ is the cost of producing using the technology 𝑇 being used for the product line 𝑝𝑙.  

𝑒𝑢𝑝𝑠𝑒𝑐𝑖𝑝 = 1 − 𝑒
௟௢௚(଴.ହ)

௘௨௣௦௘௖௛௟∙்ௌ 

eupsechl  is the end use production share equilibrium convergence half-life input parameter, and 
eupsercd is the end use production share equilibrium response to cost difference input parameter. 

NdFeB Magnet-containing Product Production Parameters 
Parameter Description 

Eupsechl End use production share equilibrium convergence half-life 
Eupsercd End use production share equilibrium response to cost diff. 

 

2.4.14 Production, sales and inventory updating 

2.4.14.1 Production, inventory updating 
Production occurs at the production rate calculated in the previous period, as long as sufficient 
inventories are available for the production to occur. This adds to product inventories (𝐼௣,௧) and 
subtracts from input inventories (𝐼௜,௧).  

𝐼௣,௧ = 𝐼௣,௧ିଵ + 𝑇𝑆 ∙ 𝑃𝑅௣,௧ 

𝐼௜,௧ = 𝐼௜,௧ିଵ − 𝑇𝑆 ∙ ෍ 𝑛௣,௜ ∙ 𝑃𝑅௣,௧

௣

 

where 𝑇𝑆 is the time step (which converts annualized flow data into a per period change in stock), and 
𝑛௣,௜ is the amount of input 𝑖 needed to produce one unit of product 𝑝. 

For mines, the oxides they extract are removed from resources, rather than inventories. 

2.4.14.2 Sales, inventory updating 
Agents will sell as much, 𝑆௣,௦,௕,௧, as is requested from its buyers, 𝐷௣,௦,௕,௧ plus long-term contract 
amounts, up to a maximum of the amount offered, 𝑄𝑂௣,௦,௕,௧. Long term contracts are given preference 
of short term requests. Inventories of both the supplier and buyer are updated when sales occur. 

Supplier inventories for supplier 𝑠: 

𝐼௣,௦,௧ = 𝐼௣,௦,௧ିଵ − 𝑇𝑆 ∙ ෍ 𝑆௣,௦,௕,௧

௕
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Buyer inventories for buyer 𝑏: 

𝐼௣,௕,௧ = 𝐼௣,௕,௧ିଵ + 𝑇𝑆 ∙ ෍ 𝑆௣,௦,௕,௧

௦

 

2.5 Model Initialization 

2.5.1 Initializing Demand 
A baseline demand level is specified for all final products and each time step of the model run. These 
are used to initialize final demand, and as a starting point for subsequent demand calculations 
throughout the model run. Baseline final product demands are calculated for each final product based 
on the demand scenarios and technology relationships from the input data. The demand scenarios 
specify the amount of each REO used in each final product at the beginning of each year from 2010 to 
2030. Values throughout the model run are estimated from these values through linear interpolation 
between the two nearest points. Technology relationships for each production process specify the 
baseline amount of inputs needed to produce a product; for example, the amount of Nd metal, Dy 
metal, Di metal and Pr metal needed to produce a magnet for industrial motors. The demand for final 
products is calculated so that if the rare earth oxide needs based on these technology relationships 
are traced back, they will match the oxides needs specified in the demand scenario as closely as 
possible. If there is an inconsistency between the technology relationships and the ratios of oxides 
from the demand scenario, the technology relationships are used, and the final demand values are 
chosen to minimize the sum of the squared differences between the calculated oxide needs and those 
in the demand scenario. 

Initial demand for oxides and intermediate products is then calculated based on the final demand 
estimates and technology relationships. 

2.5.2 Initializing Production and Inventories 
For all non-oxide products, initial production levels are assumed to match initial demand, and 
inventories are set to target levels. For oxides, the amount of production coming legally and illegally 
from each province in China is chosen from within specified ranges using an optimization formulation 
to match as closely as possible the demand levels multiplied by a set of calibrated parameters, the 
starting supply target over demand, sstod.  

The range of possible production levels for each province is taken to be ቂ
஻௉೎೛,೔೗

௖௣௦௨௜
, 𝐵𝑃௖௣,௜௟ ∙ 𝑐𝑝𝑠𝑢𝑖ቃ for 

Illegal production and ቂ
஻௉೎೛,೗

௖௣௦௨௟
, 𝐵𝑃௖௣,௟ ∙ 𝑐𝑝𝑠𝑢𝑙ቃ is for legal production, where 𝐵𝑃௖௣,௜௟ and 𝐵𝑃௖௣,௟ are 

province-specific baseline production levels specified in the input data for illegal and legal production. 
𝑐𝑝𝑠𝑢𝑖 is the Chinese province supply uncertainty for illegal oxide suppliers, and 𝑐𝑝𝑠𝑢𝑙 is the Chinese 
province supply uncertainty for mines, with higher uncertainty about illegal production. Inventories 
are set to be a multiple of target levels, with the multiples being the calibrated parameters starting 
inventories over targets, siot. 

Initializing Production and Inventories Parameters 
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Parameter Description 
sstod1 Starting supply target over demand 
𝑐𝑝𝑠𝑢𝑖 Chinese province supply uncertainty for illegal oxide 

suppliers 
𝑐𝑝𝑠𝑢𝑙 Chinese province supply uncertainty for mines 
siot1 Starting inventories over targets 

1. Separate values for each oxide. 

2.5.3 Initializing Prices 
For each product, either prices or production costs are specified in the input data. If production costs 
are specified, starting prices are set based on production costs, and markups, using target markups 
specified by the target markup parameters tm. If prices are specified, production costs (excluding 
modeled inputs) are estimated to make initial prices consistent with prices from the input data. For 
metal production we have historical time series price data for both the metals and oxides, which are 
used to estimate costs and markups through a regression of metal prices against oxide prices. 
Markups are assumed to be the same for all metals. 

Initializing Prices Parameters 
Parameter Description 

tm1 Target markup 
1. Separate values for producer agents. 

2.5.4 Initializing Substitution 
Substitutability parameters and relative costs of alternative substitution options are calibrated to 
inputs that specify substitution levels at 2010 and 2011 prices, so that there will be a realistic amount 
of substitution during the historical period. 

2.5.5 Initial Supplier Shares Optimization 
Determining the initial fractions of supply flows from each supplier to each buyer is calculated by an 
optimization formulation that calculates the shares subject to constraints on supply and demand.  The 
supplier shares must be determined such that each individual buyer flow is satisfied and the total 
demand flow from each supplier balances the available supply.  An algebraic solution is not possible 
unless all supply and demands are exactly balanced, so an optimization approach is used to minimize 
the difference between a producer’s available supply, and the total demand to that producer from all 
buyers. 

The objective function of the optimization problem is the minimization the total sum of squared error 
between the supply and demand flows for a product for a set of 𝐼 suppliers: 

𝜑 = 𝑚𝑖𝑛 ൥෍(𝐷௜ − 𝑆௜)ଶ

௜∈ூ

൩ 

Each regional supply flow 𝑆௜ is determined as the fraction of regional supply 𝑟௜ and total product 
supply 𝑆: 
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𝑆௜ = 𝑟௜𝑆 

subject to 

෍ 𝑟௜ = 1

௜∈ூ

 

The total demand on each supplier 𝐷௜ is calculated as the sum of products of each individual demand 
𝑑௝for 𝑗 ∈ 𝐽 demands, and the supplier share fraction 𝑥௜௝  which is the share of supplier 𝑖 to demand 𝑗 

𝐷௜ = ෍ 𝑥௜௝𝑑௝

௝∈௃

 

Each individual demand 𝑑௝and each total supply 𝑆௜ are known fixed quantities, and the supplier shares 
are free optimization variable subject to the constraints: 

0 ≤ 𝑥௜௝ ≤ 1 

෍ 𝑥௜௝ = 1

௝∈௃

 

 The expansion of the objective function leads to the second order form 

෍(𝐷௜ − 𝑆௜)ଶ

௜∈ூ

= ෍ 𝐷௜
ଶ

௜∈ூ

− 2 ෍ 𝐷௜𝑆௜

௜∈ூ

+ ෍ 𝑆௜
ଶ

௜∈ூ

 

which can be formulated as a quadratic program with linear constraints 

𝑚𝑖𝑛 ൤
1

2
𝒙𝑻𝑷𝒙̇ + 𝒄𝑻𝒙̇ + 𝑟൨ 

subject to 

𝑨𝒙̇ ≤ 𝒃 

For the objective function given above, we can populate the 1-dimensional solution vector 𝒙̇ with the 
unfolded 2D 𝐼 × 𝐽 supplier shares matrix of  𝑥௜௝  

𝒙̇ = ൣ𝑥ଵଵ, 𝑥ଵଶ, 𝑥ଵଷ, ⋯ , 𝑥ଵ௃, 𝑥ଶଵ, 𝑥ଶଶ, 𝑥ଶଷ, ⋯ , 𝑥ଶ௃, ⋯ , 𝑥ூ௃൧ 

The [1 × 𝐼𝐽] vector 𝒄 accounts for the coefficients in the objective term −2 ∑ 𝐷௜𝑆௜௜∈ூ  such that 

𝑐 = −2ൣ𝑆ଵ𝑑ଵ, 𝑆ଵ𝑑ଶ, ⋯ , 𝑆ଵ𝑑௃, 𝑆ଶ𝑑ଵ, 𝑆ଶ𝑑ଶଵ, 𝑆ଶ𝑑௃, ⋯ , 𝑆ூ𝑑௃൧ 

and the scalar 𝑟 is simply the sum of squared supplies: 

𝑟 = ෍ 𝑆௜
ଶ

௜∈ூ
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The 2D matrix 𝑷 is a [𝐼𝐽 × 𝐼𝐽] sparse block diagonal matrix that accounts for the second order 
coefficients on the solution vector 𝒙̇ 

𝑷 = ൦

𝒒 ∙ ∙ ∙
∙ 𝒒 ∙ ∙
∙ ∙ ⋱ ∙
∙ ∙ ∙ 𝒒

൪ 

Each diagonal block 𝒒 is a [𝐽 × 𝐽] dense symmetric matrix defined as  

𝒒 =

𝑑ଵ
ଶ 𝑑ଵ𝑑ଶ ⋯ 𝑑ଵ𝑑௃

𝑑ଵ𝑑ଶ 𝑑ଶ
ଶ … 𝑑ଶ𝑑௃

⋮ ⋮ ⋱ ⋮
𝑑ଵ𝑑௃ 𝑑ଶ𝑑௃ … 𝑑௃

ଶ

 

Buyer region preferences 

The given quadratic program will provide the optimal set of solutions for the supplier shares 𝑥௜௝  to 
minimize supply-demand error for each supplier.  The problem formulation does not account for 
regional buyer preferences to a specific supplier, in that it will determine a mathematically optimal 
solution without considering that buyers and producers preferentially trade within a region.  To 
account for regional buyer preferences, we specify a regional penalty on the objective function in the 
form 

𝜃 = ෍ ε௝

௝∈௃

 

where 𝜀௝is the objective function penalty for buyer 𝑗 according to the set of supplier shares 𝑥௜௝  for that 
particular buyer.  The penalty function will be large when the buyer prefers in-region and the supplier 
shares are disproportionally out-of-region.  This will cause the optimal solution to maximize supplier 
shares between buyers and sellers in the same region and minimize supplier shares out-of-region.  
Each buyer penalty 𝜀௝ is a nonlinear function of the supplier share and regional preference variable 𝜌௝  
for buyer 𝑗: 

𝜀௝ = ෍ ቈ
𝑥௜௝൫𝛼௜ − 𝜌௝ −  𝜌௝𝛼௜൯  𝑓𝑜𝑟 𝑖 = 𝑗

𝑥௜௝൫𝛼௜ −  𝜌௝𝛼௜൯  𝑓𝑜𝑟 𝑖 ≠ 𝑗
௜∈ூ

 

Where 𝛼௜ is the supply fraction for supplier 𝑖 

𝛼௜ = 1 −
𝑆௜

∑ 𝑆௜௜∈ூ
 

The regional preference variable 0 ≤ 𝜌௝ ≤ 1 weighs the buyer penalty such that larger values 
indicates the buyer prefers in-region. 

Initial Supplier Shares Optimization Parameters 
Parameter Description 
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𝜌௝
1 Regional Preference 

1. Separate input values for each region. 

2.5.6 Input Data Adjustment 
Much of the model input data has uncertainty ranges specified, and model runs can either be set to 
pick a central, baseline value for the input data, or to be picked at random from the range. These 
parameters also allow the size of the uncertainty range to be adjusted. Including uncertainty ranges 
allows for Monte Carlo sampling of the input space to generate uncertainty ranges for the results 
through multiple model runs. For each set of inputs with a defined uncertainty range, a parameter 
allows the user to specify whether to use baseline values for the input data (parameter value 0), the 
pre-defined uncertainty range (parameter value 1) or a multiple of the pre-defined amount of 
uncertainty. Uncertainty ranges are defined for the following input data: short and long run prices 
elasticities of demand, the military share of demand, product prices and production costs, demand 
growth, regional shares of demand, and regional shares of production, with the corresponding 
parameters, in the same order: 𝑒𝑢𝑟 (elasticities uncertainty range), 𝑚𝑠𝑢𝑟 (military share uncertainty 
range), 𝑝𝑝𝑢𝑟 (product prices uncertainty range), 𝑑𝑔𝑢𝑟 (demand growth uncertainty range), 𝑑𝑠𝑢𝑟 
(demand shares uncertainty range), and 𝑝𝑠𝑢𝑟 (production shares uncertainty range). 

Input Data Adjustment Parameters 
Parameter Description 

eur Elasticities uncertainty range 
msur Military share uncertainty range 
ppur Product prices uncertainty range 
dgur Demand growth uncertainty range 
dsur Demand shares uncertainty range 
psur Production shares uncertainty range 

 

2.6 Input data  
GCMat input data and sources are summarized in Table 2.2.  In this section, we discuss the 
uncertainties associated with the input data considered in our analysis. 

 

 

 

Table 2.2. GCMat Input Data and Sources 

GCMat Input Data Data Sources 

US, ROW, China REO mines 

 Country 

o USGS (2018): rare earth mining data   
o Adamas Intelligence (2016). [supplemented by Adamas 

Intelligence (2014)] 
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 TREO content of mine ore 
(tonnes) 

 REO concentrations in TREO 
(%) 

 Production capacity (tonnes) 
 Earliest start year 
 Capital cost (2010$) 
 Operating cost (2010$) 
 Other revenues (2010$) 

o Roskill Information Services Ltd., (2016). [supplemented 
by Roskill 2011 and 2015 reports] 

o TMR (2015) – additional mine data; past year China 
production quotas  

o Varied- publicly available sources, including mining 
company quarterly and annual reports 

 

China production and trade 

 Chinese export taxes 
 Chinese production quotas 

(tonnes) 
 Illegal TREO production 

(tonnes) 

o Adamas Intelligence (2016, 2014).   
o Roskill Information Services Ltd. (2011, 2016).  
o Curtin-IMCOA  (2014a, 2015a-c) 
o Ministry of Industry and Information Technology (2016) 

US, ROW, China producers 

 2010 production shares 
 2010 production capacities 

(2010 capacity utilization 
assumed when capacity data 
not available) 

o Curtin-IMCOA (2014b) 
o Roskill (2011, 2016): metal refining and magnet 

production 
o Private communications with vendors. 

Technologies - REO contents 

 

o Metals – stoichiometry calculations 
o Magnets – sources documented in Riddle et al. (2015) 
o Adamas Intelligence (2016, 2014).    

Technologies – Costs/Prices o Varied - estimated from vendor websites and on-line 
price data. 

Rare earth demand estimates and 
forecasts 2010-2030 

o Adamas Intelligence (2016).  [supplemented by Adamas 
Intelligence, 2014] 

o Roskill Information Services Ltd., (2016). [supplemented 
by Roskill 2011 and 2015 reports] 

Fraction of total demand for defense 
(defense shares) 

o SIPRI (2018) 
o US DOD (2016):  Protected Defense Purchases: Detail by 

Industry and State 
US, ROW, China demand shares o US EIA (2017): Table A5 World liquids consumption by 

region. 
o OICA (2016).  Sales Statistics 
o World Bank (2017)   
o Worldsteel Association (2016): True Steel Use 

Final demand elasticities o Gallaway, M. P., McDaniel, C. A., & Rivera, S. A. (2003).  

Wind turbine demand (MW/y) o Years 2010-2016:  GWEC (2016a, 2016b, 2015, 2014, 
2013, 2012, 2011, 2010 ; GWEC 2016 Wind Statistics 

o AWEA (2014): US data 
o US EIA (2014): US data 



54 
 

o Years 2018-2025:  GWEC (2016b): AEO New Policies and 
GWEC Moderate scenarios  

Electric and hybrid electric vehicle 
demand (thousand vehicles/y) 

o Argonne National Laboratory (2017)  
o US EIA (2016): AEO 2016 vehicle sales, subtab_39, 

downloaded 3/3/17 
o IEA (2017)   
o IEA (2016) 
o Adamas Intelligence (2016) 
o IEA (2014) Figure: 1.34 

Electric bike demand (thousand 
bikes/y) 

o Adamas Intelligence (2016).  
o Sources documented in Riddle et al. (2015) 

Historical rare earth prices for model 
calibration 

o Argus Metal Prices  
o Federal Reserve Bank of St. Louis (2019): Exchange 

rates  
o US DOC (2019):  Producer Price Index Industry Data    

 

We derived input data uncertainty ranges for final demand, regional production and demand shares, 
defense shares, product prices, and elasticities as summarized below: 

o The uncertainty range for final demand inputs:  ranges set to bound historical and forecast 
estimates from Roskill (2016) and Adamas (2016).  

o Regional production shares: ranges estimated from China and US demand for REO by application 
(catalysts, glass, polishing, metal alloys, magnets, phosphors, ceramics, and other) reported by 
Curtin-IMCOA (2014b). 

o Regional demand shares: ranges informed by minimum and maximum China and US demand 
shares derived for each final demand product. 

o Defense shares: ranges derived from the maximum and minimum defense expenditures as a 
percentage of GDP reported for China, US, and ROW in SPRI-Milex data. 

o Product prices: set multipliers, min = 1; max = 1.25. 
o Elasticities: ranges derived from standard errors reported by Gallaway et al. 2003.  

3 MODEL CALIBRATION AND RESULTS 
The goal of calibration for the GCMat model is to determine the input parameter values yielding 
output values that most closely match historical, real-world price data. The input parameter space of 
GCMat is too large to exhaustively search for the parameter value combinations resulting in the 
output values that best fit the historical values. Therefore, the number of input parameters under 
consideration must first be reduced to a smaller number, and then this parameter space can be 
searched for parameter combinations and values that yield a good fit. The parameters chosen for the 
smaller set are those that, when varied, have the largest effect on the model output, in other words, 
the parameters for which the model is most sensitive. 
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Model calibration is a process that requires two separate steps - sensitivity and then calibration (best-
fit analysis). The large number of individual model runs that are required to accomplish the sensitivity 
and calibration require a High Performance Computer (HPC) to complete them due to the practical 
time constraints of running thousands of simulations. The Argonne National Laboratory’s Bebop 
cluster was used for the runs described in this report. 

3.1 Sensitivity 
In the first step of the calibration process, the parameters that have the largest effect on output 
values are determined. When these parameters are determined, they are used to define a parameter 
search space of reduced size that can be sampled more effectively for the best fit parameters. 

To reduce the number of input parameters under consideration when calibrating GCMat, the Morris 
method (Morris, 1991) is used in order to rank parameters by sensitivity. The Morris method requires 
that one or more “elementary effects” be defined, and input parameter sensitivity is determined by 
how variations in input parameter values affect these elementary effect values. An elementary effect 
is a value that is a model output value or is derived from a model output value. 

For most GCMat Morris method investigations, the elementary effects are the fit error values of the 
model output price to historical price data. These values are the sums of the errors between the 
simulated price and the historical price for each time step of the simulation. In GCMat, each model 
time step represents a week of simulated time. 

Determining the most influential inputs is a multi-step process. 

For the Morris sensitivity studies, we use the “sensitivity” package available in the R programming 
language (Iooss et al., 2018). This tool facilitates the generation of parameter values for each run. In 
GCMat, an Excel spreadsheet is used to define the set of parameters, the base value of each 
parameter, and the lower and upper limits of the interval within which the parameter values are 
varied.  Using R, these values, along with the number of parameter intervals to use for each 
parameter, are input into a Morris object instance from the R sensitivity package. The object 
generates a list of parameter sets that varies each parameter individually, and covers the 
minimum/maximum interval span according to the number of intervals. From this, an R script 
constructs the appropriate parameter files to use in the HPC runs. These parameter files then drive an 
HPC batch that runs up to a thousand simultaneous individual model instances in highly concurrent 
sets. 

When all of the model runs are complete, the total fit errors for each run are totaled for each price 
output over the desired model time period. These total fit errors are the elementary effects for the 
Morris runs. The elementary effect values are input back into the Morris sensitivity R object that 
originally created the run parameters, and then this object computes each parameter change’s 
contribution to each elementary effect. Summing these contributions over all of the price outputs and 
sorting the results gives a list of parameters ordered by those that have the most effect on price 
calibration fit to those that have the least effect. 
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3.2 Calibration 
The second step in the calibration process is to perform many individual model runs with a smaller set 
of varied input parameters. Each run is performed using a different set of values for input parameters 
and thus will yield different output price data. The runs that are determined to best fit the historical 
price data are recorded as the best-fit runs, and the parameter values that are used as input to them 
are saved as the best calibration parameter values.  

GCMat is calibrated to historical price data from Metal pages for the following rare earth materials:   

 Ce Oxide 99.5-99.9% China (CN) Rmb/mt prices from 200711 to 201703 
 Ce Oxide 99.5-99.9% FOB China (CN) $/mt prices from 200201 to 201603 
 Cerium metal min 99% ex-works China CNY/mt 
 Cerium metal min 99% fob China USD/kg 
 Dy metal 99% min China (CN) Rmb/kg prices from 200711 to 201603 
 Dy Metal 99% min FOB China (CN) $/kg prices from 200201 to 201603 
 Dy Oxide 99.5% min China (CN) Rmb/kg prices from 200711 to 201603 
 Dy Oxide 99.5% min FOB China (CN) $/kg prices from 200201 to 201603 
 Eu Metal 99% min China (CN) Rmb/kg prices from 200711 to 201703 
 Eu Oxide 99.9% min FOB China (CN) $/kg prices from 200303 to 201603 
 Europium metal min 99.9% fob China USD/kg 
 Europium oxide min 99.99% ex-works China CNY/kg 
 Gadolinium metal min 99% ex-works China CNY/mt 
 Gadolinium metal min 99% fob China USD/kg 
 Gadolinium oxide 99.5-99.9% ex-works China CNY/mt 
 Gd Oxide 99% min FOB China (CN) $/mt prices from 200711 to 201411 
 La Oxide 99.5-99.9% FOB China (CN) $/mt prices from 200201 to 201603 
 Lanthanum metal min 99% ex-works China CNY/mt 
 Lanthanum metal min 99% fob China USD/kg 
 Lanthanum oxide 99.5-99.9% ex-works China CNY/mt 
 Mischmetal 35% La 65% Ce ex-works China CNY/mt 
 Mischmetal 35% La 65% Ce fob China USD/kg 
 Nd Metal 99% min China (CN) Rmb/mt prices from 200711 to 201603 
 Nd Metal 99% min FOB China (CN) $/kg prices from 200201 to 201603 
 Nd Oxide 99.5-99.9% China (CN) Rmb/mt prices from 200711 to 201603 
 Nd Oxide 99.5-99.9% FOB China (CN) $/mt prices from 200201 to 201603 
 Pr Oxide 99.5-99.9% FOB China (CN) $/mt prices from 200201 to 201603 
 Praseodymium metal min 99% ex-works China CNY/mt 
 Praseodymium metal min 99% fob China USD/kg 
 Praseodymium oxide 99.5-99.9% ex-works China CNY/mt 
 Praseodymium-Neodymium metal min 99% ex-works China CNY/mt 
 Praseodymium-Neodymium metal min 99% fob China USD/kg 



57 
 

 Praseodymium-Neodymium oxide min 99% ex-works China CNY/mt 
 Praseodymium-Neodymium oxide min 99% fob China USD/mt 
 Samarium metal min 99% ex-works China CNY/mt 
 Samarium metal min 99% fob China USD/kg 
 Samarium oxide min 99.5% ex-works China CNY/mt 
 Sm Oxide 99.5% min FOB China (CN) $/kg prices from 200201 to 201603 
 Tb Oxide 99.99% min China (CN) Rmb/kg prices from 200711 to 201703 
 Terbium metal min 99.9% ex-works China CNY/kg 
 Terbium metal min 99.9% fob China USD/kg 
 Terbium oxide min 99.99% fob China USD/kg 
 Yttrium metal min 99.9% ex-works China CNY/kg 
 Yttrium metal min 99.9% fob China USD/kg 
 Yttrium oxide min 99.999% ex-works China CNY/mt 
 Yttrium oxide min 99.999% fob China USD/mt 

After the parameters that have the largest effect on GCMat output values are determined, the 
parameters that have the smallest effect on output values are constant in calibration runs since 
varying their values will have minimal effect on fitting the historical price data. By holding many of the 
input parameters constant, the model calibration parameter space is significantly reduced. This 
reduction allows for random sampling of that space for input values and examining how the modeled 
price output values compare to the historical price values. 

To perform a set of calibration model runs, the input parameters are chosen and each of these 
parameters are given a baseline value, a minimum value and a maximum value. Using these values, 
Latin Hypercube Sampling (LHS) or Full Factorial designs are used to select samples of parameter 
values from the input parameter space given. The number of model runs is determined based on HPC 
run time and output size limits. 

As in the Morris case, R scripts are used to generate LHS sample parameter values, and from these 
values a parameter file is created which contains all parameter value combinations for all runs. The 
“lhs” function in the tgp (Treed Gaussian Process) R package (Gramacy and Taddy, 2010) is used to 
generate Latin Hypercube samples of the parameter space. 

When all of the HPC runs are complete, price data are combined from all runs into a single file, and 
calibration statistics are computed from the combined data. 

Model output for all runs is analyzed by comparing the modeled weekly price data for each metal or 
oxide to the historical weekly value in a single run, resulting in the squared error: 

 

𝑒𝑟𝑟𝑜𝑟௪௘௘௞௡  = (log 𝑉௛௜௦௧௢௥௜௖௔௟ − log 𝑉௠௢ௗ௘௟)ଶ 
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The logarithms of prices are used so that an equal percentage difference in prices will have the same 
impact on the fit measure at any historical price level. If the squared difference between the absolute 
prices (the typical error measure) had instead been used, there would be a greater emphasis on fitting 
prices when they are highest, i.e., during the peak of the historical price spike. 

The error figures for all weeks of the data period in a single run are summed for each oxide/metal, 
yielding an associated total error figure for each individual run: 

 

𝑒𝑟𝑟𝑜𝑟௠௔௧௘௥௜௔௟ =  ෍ 𝑒𝑟𝑟𝑜𝑟௪௘௘௞_௡

௪௘௘௞௦

௡ୀଵ

 

 

 

Then these total error figures for each oxide/metal are summed over all material prices in the run to 
give an overall run error: 

 

𝑒𝑟𝑟𝑜𝑟௥௨௡ =  ෍ 𝑒𝑟𝑟𝑜𝑟௠௔௧௘௥௜௔௟_௠

௠௔௧௘௥௜௔௟௦

௠ୀଵ

 

 

The total run error sums from all the HPC model runs are sorted with the lowest total run error chosen 
as the best fit run overall. 

A series of calibration model runs was conducted using high-performance computing workflows 
implemented with the EMEWS framework (Ozik, Collier, Wozniak, and Spagnuolo, 2018). EMEWS is 
built on the general-purpose parallel scripting language Swift/T (Wozniak et al. 2013), which provides 
the capability of running multi-language software tasks on anywhere from desktops to peta-scale plus 
computing resources. EMEWS enables running very large, a priori defined parameter sweeps such that 
each parameter combination is provided to an individual GCMat Repast model instance running in a 
separate Java runtime. 

A total of 10,000 individual model runs was executed on the Bebop cluster in batches of 1,024 
simultaneous runs concurrently across 32 compute nodes, with 32 processes per node.  The total real 
wall time to complete all 10,000 runs is approximately 9.5 hours. 

 Figures 3.1-3.8 show example analysis output from those runs. In the figures, the black trace is the 
historical price data. The green traces are the top runs that best fit the historical data for all prices. 
The red traces are the bottom runs that worst fit the historical data for all prices.  Plots similar to 
these are generated for all historical material prices during the calibration process. 
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Figure 3.1 shows the ten best-fitting and worst-fitting calibration runs for a single price. Note that the 
“best” and “worst” rankings are based on the cumulative error over all prices, not simply the price for 
the graph shown. Figure 3.2 shows a similar price plot as Figure 3.1, but only showing the single 
overall best-fit calibration run data against the historical data. Figure 3.3 and Figure 3.4 show similar 
information, but for a different element price. 

 

 

 

Figure 3.1. Top Ten Best and Worst Fitting Calibration Runs (Nd Oxide China FOB) 
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Figure 3.2. Overall Best Fit Run vs. Historical Data (Nd Oxide China FOB) 
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Figure 3.3. Top Ten Best and Worst Fitting Calibration Runs (Didymium Oxide China Internal) 
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Figure 3.4. Overall Best Fit Run vs. Historical Data (Didymium Oxide China Internal) 

To ascertain overall fit across all runs, Figure 3.5 shows the price fit error for each run, ordered by best 
fitting to worst. The run depicted at the very left, is the overall best fitting run and the run at the very 
right is the worst fitting run. 
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Figure 3.5. Sum of Fit Errors For All Calibration Runs 

Figure 3.6 shows the distribution of total fit errors across all runs. 
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Figure 3.6. Distribution of Fit Error Sums 

The distribution of parameter values for the best-fitting runs are also examined. In these, the top 25 
best-fit runs have the parameter values for a particular model parameter plotted as a histogram of all 
the values that the parameter took in those runs. Figure 3.7 shows a parameter where 23 of the best 
fit runs occurred with the parameter value with the values .857-.861 inclusive, while only 2 of the best 
fit runs occurred with the value less than that range.  
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Figure 3.7. Single Parameter Value Distribution for Top 25 Runs 

Figure 3.8 shows a parameter where the best fit runs occurred with no particular pattern to the 
parameter value. 
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Figure 3.8. Single Parameter Value Distribution for Top 25 Runs 

 

4 SAMPLE RESULTS 
In this section, we provide results for a baseline scenario.  Baseline results shown in Figure 4.1 
illustrate that our calibrated model replicates historical patterns from 2010–2018 and generates 
plausible projections of future developments from 2019–2030.  
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Figure 4.1. Rare earth oxide price results from baseline scenario run with comparison to historical 
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In addition to rare earth oxide and metal prices, the GCMat simulation generates many other results, 
including week by week results for each mine, producer, and final demander agent covering prices, 
production, capacities, inventories, sales, purchases, contracts, imports, exports, and RE oxide 
contents of all products.  Output files are listed and briefly described in Table 4.1. 

Table 4.1. GCMat output files 
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File name Description
GUIOutputs.csv Weekly time series data used in graphs shown in GUI. See DataSeries tab for details.
MediumOutputsV2.csv Additional weekly time series data. See DataSeries tab for details.
demand.csv At each tick, final annualized demand of each product (in product units) by buyer region

development_status_change_events.csv
Records of when deposit development is initiated, abandoned, completed (and production begins), or a producing deposit is 
shut down.  Time tick of change, facility, and change type are recorded.

development_status_events.csv At each time tick, records the operating status and TREO, Nd oxide, and Dy oxide capacity of each mine.

final_sales_events.csv
At each time tick and for each product sale, records the supplier and buyer names and regions; product name, demand, and 
sales; and Nd and Dy oxide contents for base demand, simulated demand, and sales.

inventory_change_events.csv
Detailed records of every time inventory levels are changed, including new inventory level and inventory targets. We can 
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At each time tick and for each magnet producer agent, records the technology and Nd and Dy content for the magnet 
produced.

offers
At each time tick, record of offers, specifying buyers and suppliers by region and legality, quantity, offer price, and buyer 
price.

oxide_extraction_events
At each time tick and for each mine deposit, amount produced and production capacity of total TREO and individual REOs in 
tonnes

production_events.csv Detailed records of weekly production by all agents, including production capacity at the time of production. 

transaction_events.csv
Detailed records of simulated sales transactions, including supplier and buyer names and regions; contract type and legality;  
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unmet_final_demand_events.csv
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At each tick, reports the China, US, and ROW addition, subtraction, new, and target input and product inventories for each 
product 
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and legal/illegal supply.

productSupplierBuyerBuyerPrices.csv  
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productSupplierBuyerSales.csv 
At each tick, reports for each product the weighted average yearly sales (in product units) by supplier region, buyer region, 
and legal/illegal supply.

productionAndCapacitiesByProductAndRegion.csv At each tick, reports China, US, and ROW annual production capacity and annualized amount produced for each product.
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OxideContentsBaseDemandAndSalesByProduct.csv
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At each time tick and for each individual REO, reports total REO content in sales, sales with initial oxide contents, and base 
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At each tick and for each magnet type, reports weighted average simulated and base fractions of Nd, Dy, Pr, and didymium 
metals in magnets   

ProcessDataRunner outputs
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